环丙烷衍生物作为含能材料的理论计算
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Theoretical calculation of the cyclopropane derivatives for high energy density material
  • 作者:刘涛 ; 贾进章 ; 高科
  • 英文作者:LIU Tao;JIA Jin-zhang;GAO Ke;Department of Basic Teaching, Liaoning Technical University;Key Laboratory of Mine Thermo-motive Disaster and Prevention, Ministry of Education, Liaoning Technical University;College of Safety Science and Engineering, Liaoning Technical University;
  • 关键词:理论计算 ; 环丙烷衍生物 ; 高能密度材料
  • 英文关键词:theoretical calculation;;cyclopzopone derivative;;high energy density material
  • 中文刊名:FZKB
  • 英文刊名:Journal of Molecular Science
  • 机构:辽宁工程技术大学基础教学部;辽宁工程技术大学矿山热动力灾害与防治教育部重点实验室;辽宁工程技术大学安全科学与工程学院;
  • 出版日期:2019-02-15
  • 出版单位:分子科学学报
  • 年:2019
  • 期:v.35;No.165
  • 基金:国家自然科学基金资助项目(51374121)
  • 语种:中文;
  • 页:FZKB201901003
  • 页数:7
  • CN:01
  • ISSN:22-1262/O4
  • 分类号:5+26-31
摘要
设计了系列环丙烷衍生物,考察了这类分子作为含能材料的潜在应用价值.使用密度泛函方法计算了分子结构和频率,确定了这些结构是势能面上的极小点.为了进一步考察这类分子的热力学稳定性,计算了它们的键解离能和生成热等性质,确定了A1分子的引发键为侧链上的N—NO_2键和环上的C—C键几乎同时断裂,A2和A3分子的引发键为N—NO_2键,而且所有引发键的解离能均大于80 kJ/mol,证明这类分子具有足够的稳定性进行实验室合成.高能量密度分子的爆轰性能和感度是2个最重要的指标.爆轰性质方面,使用K-J方程计算了这类分子的爆速、爆压.在感度性质方面计算了分子的氧平衡和撞击感度参数.结果表明,A3分子具有最为优秀的爆轰参数(D=9.87 km/s,P=43.33 GPa),是该类分子中最有潜力的高能量密度分子.
        The density, detonation velocities and detonation pressures for a series of cyclopropane derivatives, as well as their thermal stabilities, were investigated to look for high energy density compounds. The results show that A3 can be as candidate of high energy compounds according to excellent detonation performance(D=9.87 km/s, P=43.33 GPa). All molecules have good thermodynamics stability. The heats of formation and detonation heat are increased by nitrimino group and strain energy of three-membered ring. For A1 compound, the pyrolysis mechanism may be a mix one(breakage C—C bond and N—NO_2 bond). However, for A2 and A3 compounds, the N—NO_2 bond can be seen as trigger bond in explosive reaction. These results of this work may provide the basis information for the further study of this kind of compound and molecular design of novel high energy compounds.
引文
[1] KORKIN A A, BARTLETT R J. [J]. J Am Chem Soc, 1996, 118: 12244-12245.
    [2] CHRISTE K O, WILSON W W, SHEEHY J A, et al. [J]. Angew Chem Int Ed, 1999, 38: 2004-2009.
    [3] ZHANG M X, EATON P E, GILARDI R. [J]. Angew Chem Int Ed, 2000, 39: 401-404.
    [4] FILIPPOU A C, PORTIUS P, SCHNAKENBURG G. [J]. J Am Chem Soc, 2002, 124: 12396-12397.
    [5] GUTOWSKI K E, ROGERS R D, DIXON D A. [J]. J Phys Chem B, 2007, 111: 4788-4800.
    [6] POLITZER P, LANE P, MURRAY J S. [J]. Cent Eur J Energ Mat, 2011, 8: 39-42.
    [7] GHULE V D, RADHAKRISHNAN S, JADHAV P M. [J]. Struct Chem, 2011, 22: 775-782.
    [8] RAVI P, GORE G, SIKDER A, et al. [J]. J Struct Chem, 2012, 53: 676-684.
    [9] ELBEIH A, JUNGOVá M, ZEMAN S, et al. [J]. Propell Explos Pyrot, 2012, 37: 329-334.
    [10] EATON P E, SHANKAR B K R, PRICE G D,et al. [J]. J Org Chem, 1984, 49: 185-186.
    [11] VRIES D L,WINSTEIN S. [J]. J Am Chem Soc, 1960, 82: 5363-5376.
    [12] LIEBMAN J F, GREENBERG A. [J]. Chem Rev, 1976, 76: 311-365.
    [13] FAN X W, QIU L, JU X H. [J]. Struct Chem, 2009, 20: 1039-1042.
    [14] DING Y H, INAGAKI S. [J]. Chem Lett, 2003, 32: 304-305.
    [15] CHI W, LI L, LI B, et al. [J]. Struct Chem, 2013, 24: 1-5.
    [16] LAWONG A K, BALL D W. [J]. J Mol Struct: TheoChem, 2009, 916: 33-36.
    [17] FREUND A, üBER T. [J]. Monatsh Chem, 1882, 3: 625-635.
    [18] FREUND A, UEBER T. [J]. J Prakt Chem, 1882, 26: 367-377.
    [19] HASS H B, SHECHTER H. [J]. J Am Chem Soc, 1953, 75: 1382-1384.
    [20] WADE P A, DAILEY W P, CARROLL P J. [J]. J Am Chem Soc, 1987, 109: 5452-5456.
    [21] HAMMERL A, KLAP?TKE T M, N?TH H, et al. [J]. Inorg Chem, 2001, 40: 3570-3575.
    [22] CURTICCSS L, RAGHAVACHARI K, TRUCKS G W, et al. [J]. J Chem Phys, 1991, 94: 7221-7230.
    [23] CURTISS L A, RAGHAVACHARI K, POPLE J A. [J]. J Chem Phys, 1993,98(2): 1293-1298.
    [24] FRISCH M J, TRUCKS G W, SCHLEGEL H B, et al. Gaussian 03 [CP]. Revision C.02, Gaussian Inc, Wallingford CT, 2004.
    [25] CURTISS L A, RAGHAVACHARI K, TRUCKS G W, et al. [J]. J Chem Phys, 1991, 94: 7221-7230.
    [26] CURTISS L A, RAGHAVACHARI K, REDFERN P C, et al. [J]. J Chem Phys, 1998, 108: 692-697.
    [27] CURTISS L A, RAGHAVACHARI K, REDFERN P C, et al. [J]. J Chem Phys, 1997, 106: 1063-1079
    [28] BLANKSBY S J, ELLISON G B. [J]. Acc Chem Res, 2003, 36: 255-263.
    [29] KAMLET M J, JACOBS S J. [J]. J Chem Phys, 1968, 48: 23-35.
    [30] POLITZER P, MARTINEZ J, MURRAY J S, et al. [J]. Mol Phys, 2009, 107: 2095-2101.
    [31] BULAT F, TORO-LABBé A, BRINCK T, et al. [J]. J Mol Model, 2010, 16: 1679-1691.
    [32] GáLVEZ-RUIZ J C, HOLL G, KARAGHIOSOFF K, et al. [J]. Inorg Chem, 2005, 44: 4237-4253.
    [33] POLITZER P, MURRAY J S. [J]. Cent Eur J Energ Mat, 2011, 8: 209-220.
    [34] KAMLET M J, ADOLPH H G. [J]. Propell Explos Pyrot, 1979, 4:30-34.
    [35] WEI T, ZHU W, ZHANG X, et al. [J]. J Phys Chem A, 2009, 113: 9404-9412.
    [36] TALAWAR M B, SIVABALAN R, MUKUNDAN T, et al. [J]. J Hazard Mater, 2009, 161: 589-607.
    [37] HAAS H B, SCHECHTER H. [J]. J Am Chem Soc, 1953, 75: 1382-1392.
    [38] EATON P E, ZHANG M X, GILARDI R. [J]. Adv Mat, 2000, 12: 1143-1148.
    [39] CHEN Z X, XIAO J M, XIAO H M, et al. [J]. J Phys Chem A, 1999, 103: , et al. [J]. J Molr Model, 2010, 16: 895-901.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700