He泡对镍基合金腐蚀性能的影响
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:The effect of He bubbles on the corrosion properties of nickel-based alloy in molten salt environment
  • 作者:雷冠虹 ; 杨斯达 ; 刘仁多 ; 李健健 ; 黄庆 ; 李诚 ; 黄鹤飞 ; 闫隆
  • 英文作者:LEI Guanhong;YANG Sida;LIU Renduo;LI Jianjian;HUANG Qing;LI Cheng;HUANG Hefei;YAN Long;Shanghai Institute of Applied Physics, Chinese Academy of Sciences;University of Chinese Academy of Sciences;Shanghai Spaceflight Precision Machinery Institute;
  • 关键词:镍基合金 ; 离子辐照 ; 熔盐腐蚀 ; He泡
  • 英文关键词:Nickel based alloy;;Ion irradiation;;Molten salt corrosion;;He bubbles
  • 中文刊名:HJSU
  • 英文刊名:Nuclear Techniques
  • 机构:中国科学院上海应用物理研究所;中国科学院大学;上海航天精密机械研究所;
  • 出版日期:2019-04-10
  • 出版单位:核技术
  • 年:2019
  • 期:v.42
  • 基金:国家自然科学基金(No.11805256、No.11805261)资助~~
  • 语种:中文;
  • 页:HJSU201904014
  • 页数:7
  • CN:04
  • ISSN:31-1342/TL
  • 分类号:83-89
摘要
为了明确辐照对熔盐环境中合金腐蚀性能的影响,采用1.2 MeV的He离子对镍基UNS N10003合金进行了剂量为5×1015ions?cm-2和5×1016ions?cm-2的辐照实验,并将未辐照和辐照后的合金置于650℃的FLiNaK熔盐中进行200 h的腐蚀实验。采用扫描电子显微镜和透射电子显微镜对合金的表面形貌、元素分布及微观结构进行了分析。结果表明:低剂量下辐照未发现对合金腐蚀有明显的影响;高剂量下辐照后,合金中产生了He泡;在熔盐中腐蚀后,合金表面出现孔洞且Cr元素大量流失。利用纳米压痕技术对高剂量下辐照的合金在熔盐环境中的硬度演化行为进行了研究。结果显示:辐照后的合金硬度为4.12 GPa,腐蚀后的合金硬度为2.65 GPa,辐照腐蚀后的合金硬度为3.16 GPa,是辐照和腐蚀综合作用的结果。
        [Background] UNS N10003 alloy is considered to be the primary option of metal structural materials for the molten salt reactor(MSR). It will be affected by the extreme environments, i.e. high temperature, high neutron doses and corrosive coolant during the operation of MSR. Considering that the safe operation of MSR will mainly depends on the service performance of structural alloys, it is necessary to evaluate the performance of such kind of alloys in the complicated environments. [Purpose] This study aims at understanding the effect of He bubbles on the corrosion properties of UNS N10003 alloy in molten salt environment. [Methods] First of all, the 1.2 MeV high temperature He ion irradiation was performed on the UNS N10003 alloy at 650 oC. The irradiation fluence was set up to 5×1015 ions?cm-2 and 5×1016 ions?cm-2 respectively. Then, samples were immersed in a dry high-purity graphite crucible filled with 200 g FLiNaK salts and heated to 650 oC for 200 h. Finally, scanning electron microscopy(SEM)and transmission electron microscope(TEM) were employed to investigate the surface morphology, the distribution of elements and the microstructure, respectively. Nano-indentation technique was used to obtain the hardness.[Results] At the dose of 5 × 1015 ions ? cm-2, there was not obvious difference in the surface morphology and distribution of element distribution of the corroded alloy with and without irradiation. While for the corroded alloy pre-irradiated with He ions at the dose of 5×1016 ions?cm-2, large amount of holes were observed on the surface and the loss of Cr element was found from the bulk to the surface, which can be ascribed to the He bubbles formation.The hardness of irradiated alloy, corroded alloy, and corroded alloy pre-irradiated was 4.12 GPa, 2.65 GPa and3.16 GPa, respectively. [Conclusion] He bubbles formation play an important role on increasing the corrosion of UNS N10003 alloy. The hardness of irradiated and corroded alloy is lower than the irradiated alloy, and higher than of the corroded alloy. It is a combined effect of irradiation and corrosion.
引文
1徐洪杰,戴志敏,蔡翔舟,等.钍基熔盐堆和核能综合利用[J].现代物理知识,2018,4:25-34.DOI:10.13405/j.cnki.xdwz.2018.04.007.XU Hongjie,DAI Zhimin,CAI Xiangzhou,et al.Molten salt reactor and multipurpose utilization of nuclear energy[J].Modern Physics,2018,4:25-34.DOI:10.13405/j.cnki.xdwz.2018.04.007.
    2邱杰,邹杨,李志军,等.不同Cr含量的镍基高温合金在LiF-NaF-KF熔盐中的腐蚀行为[J].核技术,2015,38(7):070601.DOI:10.11889/j.0253-3219.2015.hjs.38.070601.QIU Jie,ZOU Yang,LI Zhijun,et al.Corrosion behaviors of nickel-based high temperature alloys in molten FLiNaK salt[J].Nuclear Techniques,2015,38(7):070601.DOI:10.11889/j.0253-3219.2015.hjs.38.070601.
    3 McCoy H E.Status of materials development for molten salt reactors[R].Oak Ridge National Laboratory,TN(USA),1978.
    4 Haubenreich P N.Experience with the molten salt reactor experiment[J].Nuclear Applications and Technology,1970,8(2):118-137.DOI:10.13182/NT8-2-118.
    5 McCoy H E.An evaluation of the molten salt reactor experiment Hastelloy N surveillance specimens-first group[R].Oak Ridge National Laboratory,TN(USA),1967.
    6 McCoy H E.An evaluation of the molten salt reactor experiment Hastelloy N surveillance specimens-second group[R].Oak Ridge National Laboratory,TN(USA),1969.
    7 McCoy H E.An evaluation of the molten salt reactor experiment Hastelloy N surveillance specimens-third group[R].Oak Ridge National Laboratory,TN(USA),1970.
    8 McCoy H E.An evaluation of the molten salt reactor experiment Hastelloy N surveillance specimens-fourth group[R].Oak Ridge National Laboratory,TN(USA),1971.
    9 DeVan J H.Materials consideration for molten salt accelerator-based plutonium conversion systems[J].AIPConference Proceedings,1994,346:476-487.DOI:10.1063/1.49122.
    10林建波,李爱国,何上明,等.He+离子辐照后Hastelloy N合金的耐腐蚀性研究[J].核技术,2014,37(5):050601.DOI:10.11889/j.0253-3219.2014.hjs.37.050601.LIN Jianbo,LI Aiguo,HE Shangming,et al.Investigation on corrosion resistance of Hastelloy N alloy after He+ion irradiation[J].Nuclear Techniques,2014,37(5):050601.DOI:10.11889/j.0253-3219.2014.hjs.37.050601.
    11 Zhu H L,Holmes R,Hanley T,et al.High-temperature corrosion of helium ion-irradiated Ni-based alloy in fluoride molten salt[J].Corrosion Science,2015,91:1-6.DOI:10.1016/j.corsci.2014.11.013.
    12 Liu M,Hou J,Han F F,et al.Effects of He ion irradiation on the corrosion performance of alloy GH3535[J].Corrosion Science,2019,146:172-178.DOI:10.1016/j.corsci.2018.10.038.
    13 Stoller R E,Toloczko,M B,Was G S,et al.On the use of SRIM for computing radiation damage exposure[J].Nuclear Instruments and Methods in Physics Research Section B,2013,310:75-80.DOI:10.1016/j.nimb.2013.05.008.
    14 Olson L C,Ambrosek J W,Sridharan K,et al.Materials corrosion in molten LiF-NaF-KF salt[J].Journal of Fluorine Chemistry,2009,130:67-73.DOI:10.1016/j.jfluchem.2008.05.008.
    15 Was G S,Busby J T,Allen T,et al.Emulation of neutron irradiation effects with protons:validation of principle[J].Journal of Nuclear Materials,2002,85:198-216.DOI:10.1016/S0022-3115(01)00751-6.
    16 Pharr G M,Herbert E G,Gao Y F.The indentation size effect:a critical examination of experimental observations and mechanistic interpretations[J].Annual Review of Materials Research,2010,40:271-292.DOI:10.1146/annurev-matsci-070909-104456.
    17 Kasada R,Takayama Y,Yabuuchi K,et al.A new approach to evaluate irradiation hardening of ionirradiated ferritic alloys by nano-indentation techniques[J].Fusion Engineering and Design,2011,86:2658-2661.DOI:10.1016/j.fusengdes.2011.03.073.
    18 Nix W D,Gao H.Indentation size effect in crystalline materials:a law for strain gradient plasticity[J].Journal of the Mechanics and Physics of Solids,1998,46:411-425.DOI:10.1016/S0022-5096(97)00086-0.
    19 Huang H F,Li D H,Li J J,et al.Nano-structure variations and their effects on mechanical strength of Ni-17Mo-7Cr alloy under xenon ion irradiation[J].Materials Transactions,2014,55:1243-1247.DOI:10.2320/matertrans.M2014075.
    20 Zinkle S J,Oliver W C.Mechanical property measurements on ion-irradiated copper and Cu-Zr[J].Journal of Nuclear Materials,1986,548:141-143.DOI:10.1016/S0022-3115(86)80100-3.
    21 Lei G H,Xie R B,Huang H F.The effect of He bubbles on the swelling and hardening of UNS N10003 alloy[J].Journal of Alloys and Compounds,2018,746:153-158.DOI:10.1016/j.jallcom.2018.02.291.
    22刘哲,包良满,刘可,等.氦离子辐照对镍基合金硬度的影响[J].核技术,2015,38(7):070605.DOI:10.11889/j.0253-3219.2015.hjs.38.070605.LIU Zhe,BAO Liangman,LIU Ke,et al.Investigation of helium irradiation induced hardening in nickel-based alloy[J].Nuclear Techniques,2015,38(7):070605.DOI:10.11889/j.0253-3219.2015.hjs.38.070605.
    23 Ye X X,Ai H,Guo Z,et al.The high-temperature corrosion of Hastelloy N alloy(UNS N10003)in molten fluoride salts analysed by STXM,XAS,XRD,SEM,EPMA,TEM/EDS[J].Corrosion Science,2016,106:249-259.DOI:10.1016/j.corsci.2016.02.010.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700