冀北张麻井铀钼矿床叠加成矿:矿石地球化学质量平衡迁移计算的制约
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Superimposed mineralization of Zhangmajing uranium-molybdenum deposit in northern Hebei Province: Constraints from mass balance migration calculation of ore geochemistry
  • 作者:宋凯 ; 巫建华 ; 郭恒飞 ; 郭国林
  • 英文作者:SONG Kai;WU JianHua;GUO HengFei;GUO GuoLin;State Key Laboratory of Nuclear Resources and Environment,East China University of Technology;China Nonferrous Metals Geology and Mining Co.,Ltd.;No.243 Geological Party,CNNC;
  • 关键词:地球化学 ; 铀成矿 ; 钼成矿 ; 元素 ; 组分迁移定量分析 ; 张麻井铀钼矿床
  • 英文关键词:geochemistry;;uranium metallogenic;;molybdenum metallogenic;;element;;quantitative analysis of component transfer;;Zhangmajing uranium-molybdenum deposit
  • 中文刊名:KCDZ
  • 英文刊名:Mineral Deposits
  • 机构:东华理工大学核资源与环境国家重点实验室;中国有色桂林矿产地质研究院有限公司;核工业二四三大队;
  • 出版日期:2019-06-15
  • 出版单位:矿床地质
  • 年:2019
  • 期:v.38
  • 基金:国家自然科学基金项目(编号:41372071);; 中国核工业集团公司项目(编号:中核地计[2008]74号)的联合资助
  • 语种:中文;
  • 页:KCDZ201903010
  • 页数:21
  • CN:03
  • ISSN:11-1965/P
  • 分类号:144-164
摘要
张麻井铀钼矿床位于沽源-红山子铀成矿带西南段,是中国重要的与火山岩有关的热液铀矿床,其铀、钼储量均达到大型矿床的标准。铀-钼矿矿体主要分布于流纹斑岩岩体的内外接触带,钼矿化的分布范围略大于铀矿化,两者在空间上高度重叠。在铀-钼矿矿体外发育一层单钼矿体,与铀-钼矿矿体界限清晰,两者为截然分开的接触关系。为了研究该矿床铀成矿与钼成矿的关系,对张麻井的铀矿石、钼矿石进行主微量元素分析,采用质量平衡迁移计算方法,选择Yb元素作为不活动组分,使用Grant公式对其组分迁移定量计算。地球化学数据显示,铀矿石的平均w(U)、w(Mo)为1589×10-6、3837×10-6;钼矿石的平均w(U)、w(Mo)为493×10-6、5706×10-6,显示钼矿石具有更高的Mo含量,更低的U含量。计算结果显示铀矿石的Isocon均小于以1(分别为0.48、0.58、0.46、0.53),相较流纹斑岩整体发生了组分带入,其中最明显的特点是带入大量SiO2,还带入Mo、U、Zn、Cu、Ni、V、Pb、Co等成矿元素,K2O、Na2O、Rb、Cs等碱金属,以及Ba、Sr等大离子亲石元素,Cd、Bi、Sc、Eu等组分也表现出较大程度的带入,仅碱金属Li,MnO等少量组分显示带出;钼矿石的Isocon均小于以1(分别为0.73、0.67、0.90、0.39),相较于流纹斑岩整体也发生了组分带入,带入的主要有成矿元素Mo、U、Ni、Zn、V、Co、Cu、Pb,碱金属K2O、Na2O、Rb、Li,大离子亲石元素Ba、Sr,以及TFeO、Cd、Bi、Sc等组分,仅Cr、MnO组分显示带出。质量平衡迁移计算之后,铀、钼矿石平均w(Mo)分别增加到7217×10-6、7759×10-6,显示两者增加的Mo基本一致。铀、钼矿石平均w(U)分别增加到3131×10-6、604×10-6,显示前者增加的U远远大于后者。在标准化Isocon图解中,铀矿石和钼矿石的组分迁移具有一定相似性,但具体迁移特征也有一定的差异,整体上表现出相似而不相同的特点。结合矿石从铀-钼矿矿体到外侧的单钼矿体,U含量迅速下降的地球化学特征,铀、钼矿体的空间分布特征以及其接触关系,文章认为两者极有可能是不同的成矿过程,而且可能是后期富铀成矿流体叠加在早期的钼矿之上。
        Located in the southwestern part of the Guyuan-Hongshanzi uranium metallogenic belt, the Zhangmajing uranium-molybdenum deposit is an important volcanics-related hydrothermal uranium deposit in China, whose uranium and molybdenum reserves all meet the standards of large deposits. Uranium orebodies are mainly distributed in the inner and outer contact zones of the rhyolite porphyry body. The distribution of molybdenum ore is slightly larger than that of uranium ore, but they are highly superimposed upon each other in space. A layer of mono-molybdenum mineralization is developed outside the uranium deposit, and the boundary obviously shows completely separate contact relationship. In order to explore the relationship between the uranium mineralization and molybdenum mineralization of the deposit, the authors analyzed the main trace elements of the uranium ore and molybdenum ore in Zhangmajing with Yb as the inactive component to calculate component migration quantitatively by Grant formula. Geochemical data show that the average content of uranium and molybdenum in uranium ore is 1589×10-6 and 3837×10-6, whereas the average content of uranium and molybdenum in molybdenum ore is 493×10-6 and 5706×10-6, indicating that molybdenum ore has higher Mo content and lower U content. The calculation results show that the isocon of uranium ore is less than 1(0.48, 0.58, 0.46 and 0.53, respectively),showing that the components was brought in on the whole. The most obvious feature is that a large amount of SiO2 was brought in. Besides, ore-forming elements such as Mo, U, Zn, Cu, Ni, V, Pb and Co, alkali metals such as K2 O, Na2 O, Rb and Cs, and large ion lithophile elements such as Ba and Sr, were all brought in. The components such as Cd, Bi, Sc, and Eu also exhibit a large degree of being brought in, only a small amount of alkali metal of Li and MnO were taken out. The isocon of molybdenum ore is less than 1(0.73, 0.67, 0.90 and0.39, respectively), and the components were also brought in on the whole. The main elements were brought in,which included ore-forming elements such as Mo, U, Ni, Zn, V, Co, Cu and Pb, alkali metals such as K2 O, Na2 O,Rb and Li, and large ion lithophile elements such as Ba, Sr, TFeO, TFeO, Cd, Bi and Sc. Only Cr and MnO components were taken out. The Mo content of uranium and molybdenum ore increased to 7217×10-6 and 7759×10-6,respectively, indicating that the increased Mo was almost coincided. The U content of uranium and molybdenum ore increased to 3131×10-6 and 604×10-6, respectively, indicating that the increase of U in the former was much larger than that in the latter. Uranium elements and molybdenum elements show some similarities in the migration of the components in the standardized Isocon diagram, but the specific migration characteristics also show some differences. They show some similarity but are not identical. The authors hold that uranium and molybdenum orebodies were formed by different mineralization processes, as shown by the combination of the spatial distribution characteristics with their contact relationships. It is probable that the later rich uranium ore-forming fluid was superimposed on the early molybdenum ore.
引文
Ai J B,Ma S M,Zhu L X,Xi M J,Fan L J,Hu Z X and Zhang Y.2013.Major elements migration regularity and mass change quantification of alteration zones in Matou porphyry Mo-Cu deposit,Anhui Province[J].Mineral Deposits,32(6):1262-1274.
    Ague J J.2003.Fluid infiltration and transport of major,minor,and trace elements during regional metamorphism of carbonate rocks,Wepawaug Schist,Connecticut,USA[J].American Journal of Science,303(9):753-816.
    Brimhall G H and Dietrich W E.1987.Constitutive mass balance relations between chemical composition,volume,density,porosity,and strain in metasomatic hydrochemical systems:Results on weathering and pedogenesis[J].Geochimica et Cosmochimica Acta,51(3):567-587.
    Brimhall G H,Lewis C J,Ague J J,Dietrich,W E,Hampel J,Teague Tand Rix P.1988.Metal enrichment in bauxites by deposition of chemically mature aeolian dust[J].Nature,333(6176):819-824.
    Bustillo M A and Bustillo M.2000.Miocene silcretes in argillaceous playa deposits,Madrid Basin,Spain:Petrological and geochemical features[J].Sedimentology,47(5):1023-1037.
    Cai Y Q,Zhang J D,Li Z Y,Guo Q Y,Song J Y,Fan H H,Liu W S,Qi F C and Zhang M L.2015.Outline of uranium resources characteristics and metallogenetic regularity in China[J].Acta Geologica Sinica,89(6):1051-1069(in Chinese with English abstract).
    Cail T L and Cline J S.2001.Alteration associated with gold deposition at the getchell carlin-type gold deposit,north-Central Nevada[J].Econ.Geol.,96(6):1343-1359.
    Chavagnac V,Kramers J D,N?gler T F and Holzer L.2001.The behaviour of Nd and Pb isotopes during 2.0 Ga migmatization in paragneisses of the Central Zone of the Limpopo Belt(South Africa and Botswana)[J].Precambrian Research,112(1-2):51-86.
    Chen D H,Fan H H,Wang F G and He D B.2011.The alteration characteristics of uranium deposits in Guyuan-Hongshanzi area[J].Uranium Geology,27(2):88-94(in Chinese with English abstract).
    Chen L,Cheng C and Wei Z G.2010.Contrasting structural features at different boundary areas of the North China Craton and its tectonic implications[J].Advances in Earth Science,25(6):571-581.
    Chen Y C.1999.Prospective evaluation of mineral resources in major metallogenic areas of China[M].Beijing:Geological Publishing House.1-536(in Chinese with English abstract).
    Cui S Q.2002.Mesozoic and cenozoic intracontinental orogeny in Yanshan area[M].Beijing:Geological Publishing House.1-386(in Chinese with English abstract).
    Dai J Z,Mao J W,Yang F Q,Ye H S,Zhao C S,Xie G Q and Zhang CQ.2006.Geological characteristics and geodynamic background of molybdenum(copper)de posits along Yanshan-Liaoning metallogenic belt on northern margin of North China Block[J].Mineral Deposits,25(5):598-612(in Chinese with English abstract).
    Duan T X,Wen S Q,Zhou P,Zhu E J,Cui X D,Sun J Q,Zhao T and Wei C K.2018.Wall rock alteration characteristics and mass balance calculation of Dongjun Pb-Zn-Ag deposit in Inner Mongolia[J].Journal of Central South University(Science and Technology),49(8):1991-2002(in Chinese with English abstract).
    Etheridge M A,Wall V J and Vernon R H.2010.The role of the fluid phase during regional metamorphism and deformation[J].Journal of Metamorphic Geology,1(3):205-226.
    Guo H J and Ma S K.2009.Analysis on the ore-control factors and peripheral prospecting for the Zhangmajing U-Mo Deposit in Guyuan County,Hebei Province[J].Geological Survey and Research,32(3):210-215(in Chinese with English abstract).
    Grant J A.1986.The isocon diagram-a simple solution to Gresens'equation for metasomatic alteration[J].Econ.Geol.,81(8):1976-1982.
    Grant J A.2005.Isocon analysis:A brief review of the method and applications[J].Physics and Chemistry of the Earth,Parts A/B/C,30(17-18):997-1004.
    Guo S,Ye K,Chen Y and Liu J B.2009.A normalization solution to mass transfer illustration of multiple progressively altered samples using the isocon diagram[J].Econ.Geol.,104(6):881-886.
    Guo S,Ye K,Chen Y,Liu J B and Zhang L M.2013.Introduction of mass-balance calculation method for component transfer during the opening of a geological system[J].Acta Petrologica Sinica,29(5):1486-1498(in Chinese with English abstract).
    Harlov D E,Wirth R and Hetherington C J.2011.Fluid-mediated partial alteration in monazite:The role of coupled dissolution-reprecipitation in element redistribution and mass transfer[J].Contributions to Mineralogy and Petrology,162(2):329-348.
    Hebei Bureau of Geology and Mineral Resources.1996.Rock formations in Hebei Province[M].WuHan:China University of Geosciences Press.1-146(in Chinese with English abstract).
    Ji H W.2015.Study on mineralization of Hongshanzi uranium-molybdenum deposit in Keshiketengqi,Inner Mongolia(dissertation for doctoral degree)[D].Supervisor:Li Z Y.Beijing.Nuclear Industry Beijing Institute of Geology.1-135(in Chinese with English abstract).
    Jiang S,Pan J Y,Duan L,Gao J M,Ren W L,Zhang Z L and Wang WG.2011.Geologic features of Caijiaying-Yudaokou fracture zone in the western Yanshan Mt.and its control role on uranium mineralization[J].Journal of East China Institute of Technology(Natural Science Edition),34(4):301-307(in Chinese with English abstract).
    Keller L M,Abart R,Stünitz H and De C C.2004.Deformation,mass transfer and mineral reactions in an eclogite facies shear zone in a polymetamorphic metapelite(Monte Rosa nappe,western Alps)[J].Journal of Metamorphic Geology,22(2):97-118.
    Khomich V G,Boriskina N G and Santosh M.2017.Super large mineral deposits and deep mantle dynamics:The scenario from southeast Trans-Baikal region,Russia[J].Geological Journal,53(1):412-423.
    Kwon S,Park Y,Park C and Kim H S.2009.Mass-balance analysis of bulk-rock chemical changes during mylonitization of a megacrystbearing granitoid,Cheongsan shear zone,Korea[J].Journal of Asian Earth Sciences,35(6):489-501.
    Li J Y,Zhang J,Yang T N,Li Y P,Sun G H,Zhu Z X and Wang L J.2009.Crustal tectonic division and evolution of the southern part of the North Asian orogenic region and its adjacent areas[J].Journal of Jilin University(Earth Science Edition),39(4):584-605(in Chinese with English abstract).
    Li Y S.1989.Isotope age of principal mineralization period in uranium deposit No.460[J].Uranium Geology,5(4):203-208(in Chinese with English abstract).
    Luo Y.1993.The structure-mineralization zoning and approach to the metallogenic model for volcanic type molybdenum-uranium deposit No.460[J].Uranium Geology,(1):23-28(in Chinese with English abstract).
    Luo Y.1994.Study on tectonic-mineralization vertical zoning and metallogenic model of 460 large-scale volcanic-type uranium-molybdenum deposit[J].Mineral Deposits,(s1):64-66(in Chinese with English abstract).
    LüZ Y.2012.Geological characteristics of uranium-molybdenum deposit in Zhangmajing and prospecting idea for Guyuan Basin[J].Mineral Exploration,3(4):452-457(in Chinese with English abstract).
    Mao J W,Li X F,Zhang R H,Wang Y T,He Y and Zhang Z H.2005.Deep fluid metallogenic system[M].Beijing:China Land Press.1-365(in Chinese with English abstract).
    Neimenggu Bureau of Geology and Mineral Resources.1997.Rock strata in Neimongolia autonomous region[M].Wuhan:China University of Geosciences Press.1-344(in Chinese with English abstract).
    Nie F J,Zhang W Y,Du A D,Jiang S H and Liu Y.2007.Re-Os isotopic dating on molybdenite separates from the Xiaodonggou porphyry Mo deposit,Hexigten Qi,Inner Mongolia[J].Acta Geologica Sinica,81(7):898-905(in Chinese with English abstract).
    O'Hara K.1988.Fluid flow and volume loss during mylonitization:An origin for phyllonite in an overthrust setting,North Carolina U.S.A.[J].Tectonophysics,156(1-2):21-36.
    Pennistondorland S C and Ferry J M.2008.Element mobility and scale of mass transport in the formation of quartz veins during regional metamorphism of the Waits River Formation,east-central Vermont[J].American Mineralogist,93(1):7-21.
    Pei R F.1998.Ore-forming anomaly and abnormal ore-forming tectonics convergent field of China oversize deposits[M].Beijing:Geological Publishing House.1-418(in Chinese with English abstract).
    Somarin A K.2004.Geochemical effects of endoskarn formation in the Mazraeh Cu-Fe skarn deposit in northwestern Iran[J].Geochemistry:Exploration,Environment,Analysis,4(4):307-315.
    Qin F,Liu J M,Zeng Q D and Zhang R B.2008.The Metallogenic epoch and source of ore-forming materials of the Xiaodonggou porphyry molybdenum deposit,Inner Mongolia[J].GeoscienceJournal of Graduate School,China University of Geosciences,22(2):173-180(in Chinese with English abstract).
    Qin F,Liu J M,Zeng Q D and Luo Z H.2009.Petrogenetic and metallogenic machenism of the Xiaodonggou porphyry molybdenum deposit in Hexigten Banner,Inner Mongolia[J].Acta Petrologica Sinica,25(12):3357-3368(in Chinese with English abstract)
    Ren Z H and Wan T F.1997.Metallotectonic setting of the uranium deposit No.460[J].Uranium Geology,13(3):154-158(in Chinese with English abstract).
    Shen G Y.2007.Ore-controlling factors of the 460 U-Mo deposit and its genesis discussion[J].Mineral Resources and Geology,21(5):509-514(in Chinese with English abstract).
    Shen G Y.2010.Discovery and developing process of Daguanchang uranium multi-metal deposit[J].Nonferrous Metals(Mining Section),62(3):19-22(in Chinese with English abstract).
    Song K,Wu J H,Niu Z L,Wu R G and Liu S.2017.Geochronology,geochemical characteristics and its geological implications of the rhyolite of the Duobengou basin in Weichang,Hebei Province[J].Journal of East China Institute of Technology(Natural Science Edition),40(4):323-333(in Chinese with English abstract).
    Sun S S.1989.Chemical and isotopic systematics of oceanic basalt:Implications for mantle composition and processes[J].Geological Society London Special Publications,42(1):313-345.
    Wang C Y,Li X F,Xiao R,Bai Y P,Yang F,Mao W and Jiang S K.2012.Elements mobilization of mineralized porphyry rocks during hydrothermal alteration at Zhushahong porphyry copper deposit,Dexing district,South China[J].Acta Petrologica Sinica,28(12):3869-3886(in Chinese with English abstract).
    Wang Z Q.2015.The study on geological characteristics and metallogenic regular of Zhangmajing uranium-molybdenum deposit in northern Hebei Province(dissertation for master degree)[D].Supervisor:Wang J G.Beijing:China University of Geosciences.1-69(in Chinese with English abstract).
    Wang Z Q,Fang H H,Chen D H,Zheng K Z,Luo Q H,Liu J G,Wang F G and Wang Y J.2018.Geochemistry,element migration and mechanism of uranium mineralization in the periphery of the Shazijiang uranium ore deposit[J].Geological Journal of China Universities,24(2):185-199(in Chinese with English abstract).
    Wu J H,Wu J,Zhu H T,Guo G L,Wu R G,Liu S and Yu D G.2013.Lithostratigraphical correlation of the volcanic rock series in Hongshanzi basin in Great Hingan Range[J].Geological Journal of China Universities,19(3):472-483(in Chinese with English abstract).
    Wu J H,Ding H,Niu Z L,Wu R G,Zhu M Q,Guo G L,Liu S and Yu D G.2015.SHRIMP zircon U-Pb dating of country rock in Zhangmajing U-Mo deposit in Guyuan,Hebei Province,and its geological significance[J].Mineral Deposits,34(4):757-768(in Chinese with English abstract).
    Wu J H,Zhang J Y,Jiang S,Xie K R,Guo G L and Wu R G.2017.Geochronology,geochemical characteristics and petrogenesis of trachytes in the Guyuan uranium ore field,northern Hebei Province[J].Geochimica,46(2):105-122(in Chinese with English abstract).
    Xiao W,Windley B F,Hao J and Zhai M.2003.Accretion leading to collision and the Permian Solonker suture,Inner Mongolia,China:Termination of the central Asian orogenic belt[J].Tectonics,22(6):1069-1089.
    Zhang B L,Yang L Q,Huang S Y,Liu Y,Liu W L,Zhao R X,Xu Y Band Liu S G.2014.Hydrothermal alteration in the Jiaojia gold deposit,Jiaodong,China[J].Acta Petrologica Sinica,30(9):2533-2545(in Chinese with English abstract).
    Zhang B L,Shan Wei,Li D P,Xiao B J,Wang Z L and Zhang R Z.2017.Hydrothermal alteration in the Dayingezhuang gold deposit,Jiaodong,China[J].Acta Petrologica Sinica,33(7):2256-2272(in Chinese with English abstract).
    Zhang C,Huang T,Liu X D,Liu Y,Zhao H and Wang X D.2016.Hydrothermal alteration of the Xincheng gold deposit,northwestern Jiaodong,China[J].Acta Petrologica Sinica,32(8):2433-2450(in Chinese with English abstract).
    Zhang J D,Li Z Y,Cai Y Q,Guo Q Y,Li Y L and Han C Q.2012.The main advance and achievements in the potential evaluation of uranium resource in China[J].Uranium Geology,28(6):321-326(in Chinese with English abstract).
    Zhang K Q and Yang Y.2002.Introduction of the method for mass balance calculation in altered rocks[J].Geological Science and Technology Information,21(3):104-107(in Chinese with English abstract).
    Zhang L C,Wu H Y,Xiang P,Zhang X J,Chen Z G and Wan B.2010.Ore-forming processes and mineralization of complex tectonic system during the mesozoic:A case from Xilamulun Cu-Mo metallogenic belt[J].Acta Petrologica Sinica,26(5):1351-1362(in Chinese with English abstract).
    Zhang Y F,Wu J H,Jiang S,Liu X,Wu R G,Liu S and Guo G L.2016.SHRIMP U-Pb geochronology,geochemistry and Sr-Nd isotopes of the uranium-(molybdenum)related rhyolite and granitic porphyry,Datan,northern Heibei[J].Acta Petrologica Sinica,32(1):193-211(in Chinese with English abstract).
    Zhang Z C,Li N,Ji X Z,Han Z,Guo Y Y and Li Z C.2015.Hydrothermal alteration of the Anba deposit,Yangshan gold belt,western Qinling[J].Acta Petrologica Sinica,31(11):3405-3419(in Chinese with English abstract).
    Zhou D A.1988.The Superimposed metallogenesis in the formation of rich ores in uranium deposit No.460[J].Uranium Geology,4(3):139-144(in Chinese with English abstract).
    Zhou Y Z.1993.Estimation of mass balance of element migration during micro-fracture-stitching mechanism and hydro-environmental rock alteration-Taking Hetai Goldfield as an example[J].Bulletin of Mineralogy,Petrology and Geochemistry,12(3):116-118(in Chinese with English abstract).
    艾金彪,马生明,朱立新,席明杰,樊连杰,胡兆鑫,张燕.2013.安徽马头斑岩型钼铜矿床蚀变带常量元素迁移规律及其定量计算[J].矿床地质,32(6):1262-1274.
    蔡煜琦,张金带,李子颖,郭庆银,宋继叶,范洪海,刘武生,漆富成,张明林.2015.中国铀矿资源特征及成矿规律概要[J].地质学报,89(6):1051-1069.
    陈东欢,范洪海,王凤岗,何德宝.2011.沽源-红山子地区火山岩型铀矿床蚀变特征[J].铀矿地质,27(2):88-94.
    陈凌,程骋,危自根.2010.华北克拉通边界带区域深部结构的特征差异性及其构造意义[J].地球科学进展,25(6):571-581.
    陈毓川.1999.中国主要成矿区带矿产资源远景评价[M].北京:地质出版社.1-536.
    崔盛芹.2002.燕山地区中新生代陆内造山作用[M].北京:地质出版社.1-386.
    代军治,毛景文,杨富全,叶会寿,赵财胜,谢桂青,张长青.2006.华北地台北缘燕辽钼(铜)成矿带矿床地质特征及动力学背景[J].矿床地质,25(5):598-612.
    段天绪,温守钦,周鹏,朱恩静,崔显德,孙家全,赵桐,魏灿坤.2018.内蒙古东珺铅锌银矿床质量平衡计算与围岩蚀变特征[J].中南大学学报(自然科学版),49(8):1991-2002.
    郭鸿军,马申坤.2009.河北省沽源县张麻井铀钼矿控矿因素分析及外围找矿前景探讨[J].地质调查与研究,32(3):210-215.
    郭顺,叶凯,陈意,刘景波,张灵敏.2013.开放地质体系中物质迁移质量平衡计算方法介绍[J].岩石学报,29(5):1486-1498.
    河北省地质矿产局.1996.河北省岩石地层[M].武汉:中国地质大学出版社.1-146.
    纪宏伟.2015.内蒙古克什克腾旗红山子铀钼矿床成矿作用研究(博士论文)[D].导师:李子颖.北京:核工业北京地质研究院.1-135.
    姜山,潘家永,段力,高井明,任伟龙,张子龙,王卫国.2011.燕山西段蔡家营-御道口断裂带的地质特征及其对铀成矿的控制作用[J].东华理工大学学报(自然科学版),34(4):301-307.
    李锦轶,张进,杨天南,李亚萍,孙桂华,朱志新,王励嘉.2009.北亚造山区南部及其毗邻地区地壳构造分区与构造演化[J].吉林大学学报(地球科学版),39(4):584-605.
    李耀菘.1989.460铀矿床主要矿化期的同位素年龄[J].铀矿地质,5(4):203-208.
    罗毅.1993.460火山岩型铀-钼矿床的构造-矿化分带及成矿模式研究[J].铀矿地质,(1):23-28.
    罗毅.1994.460大型火山岩型铀-钼矿床的构造-矿化垂向分带及成矿模式研究[J].矿床地质,13(s1):64-66.
    吕增尧.2012.张麻井铀钼矿床地质特征及沽源盆地找矿思路[J].矿产勘查,3(4):452-457.
    毛景文,李晓峰,张荣华,王义天,赫英,张作衡.2005.深部流体成矿系统[M].北京:中国大地出版社.1-365.
    内蒙古自治区地质矿产局.1997.内蒙古自治区岩石地层[M].武汉:中国地质大学出版社.1-344.
    聂凤军,张万益,杜安道,江思宏,刘妍.2007.内蒙古小东沟斑岩型钼矿床辉钼矿铼-锇同位素年龄及地质意义[J].地质学报,81(7):898-905.
    裴荣富.1998.中国特大型矿床成矿偏在性与异常成矿构造聚敛场[M].北京:地质出版社.1-418.
    任之鹤,万天丰.1997.460铀矿床成矿构造背景[J].铀矿地质,13(3):154-158.
    沈光银.2007.460铀-钼矿床控矿因素及矿床成因探讨[J].矿产与地质,21(5):509-514.
    沈光银.2010.大官厂铀多金属矿床的发现和发展过程[J].有色金属(矿山部分),62(3):19-22.
    宋凯,巫建华,牛子良,吴仁贵,刘帅.2017.冀北多本沟盆地流纹岩年代学、地球化学特征及地质意义[J].东华理工大学学报(自然科学版),40(4):323-333.
    覃锋,刘建明,曾庆栋,张瑞斌.2008.内蒙古小东沟斑岩型钼矿床的成矿时代及成矿物质来源[J].现代地质,22(2):173-180.
    覃锋,刘建明,曾庆栋,罗照华.2009.内蒙古克什克腾旗小东沟斑岩型钼矿床成岩成矿机制探讨[J].岩石学报,25(12):3357-3368.
    王翠云,李晓峰,肖荣,白艳萍,杨锋,毛伟,蒋松坤.2012.德兴朱砂红斑岩铜矿热液蚀变作用及元素地球化学迁移规律[J].岩石学报,28(12):3869-3886.
    王兆强.2015.冀北张麻井铀钼矿床地质特征及成矿规律(硕士论文)[D].导师:王建国.北京:中国地质大学.1-69.
    王正庆,范洪海,陈东欢,郑可志,罗桥花,刘军港,王凤岗,王勇剑.2018.沙子江铀矿外围地化特征、元素迁移及铀成矿机理[J].高校地质学报,24(2):185-199.
    巫建华,武珺,祝洪涛,郭国林,吴仁贵,刘帅,余达淦.2013.大兴安岭红山子盆地火山岩系岩石地层对比[J].高校地质学报,19(3):472-483.
    巫建华,丁辉,牛子良,吴仁贵,祝民强,郭国林,刘帅,余达淦.2015.河北沽源张麻井铀-钼矿床围岩SHRIMP锆石U-Pb定年及其地质意义[J].矿床地质,34(4):757-768.
    巫建华,张婧妍,姜山,解开瑞,郭国林,吴仁贵.2017.冀北沽源铀矿田粗面岩的年代学、地球化学特征及岩石成因[J].地球化学,46(2):105-122.
    张炳林,杨立强,黄锁英,刘跃,刘文龙,赵荣新,徐咏彬,刘胜光.2014.胶东焦家金矿床热液蚀变作用[J].岩石学报,30(9):2533-2545.
    张炳林,单伟,李大鹏,肖丙建,王中亮,张瑞忠.2017.胶东大尹格庄金矿床热液蚀变作用[J].岩石学报,33(7):2256-2272.
    张潮,黄涛,刘向东,刘育,赵海,王旭东.2016.胶西北新城金矿床热液蚀变作用[J].岩石学报,32(8):2433-2450.
    张金带,李子颖,蔡煜琦,郭庆银,李友良,韩长青.2012.全国铀矿资源潜力评价工作进展与主要成果[J].铀矿地质,28(6):321-326.
    张可清,杨勇.2002.蚀变岩质量平衡计算方法介绍[J].地质科技情报,21(3):104-107.
    张连昌,吴华英,相鹏,张晓静,陈志广,万博.2010.中生代复杂构造体系的成矿过程与成矿作用--以华北大陆北缘西拉木伦钼铜多金属成矿带为例[J].岩石学报,26(5):1351-1362.
    张雅菲,巫建华,姜山,刘玄,吴仁贵,刘帅,郭国林.2016.冀北大滩盆地铀(钼)成矿流纹岩-花岗斑岩SHRIMP锆石U-Pb定年、地球化学及Sr-Nd同位素特征[J].岩石学报,32(1):193-211.
    张志超,李楠,戢兴忠,韩忠,郭耀宇,李在春.2015.西秦岭阳山金矿带安坝矿床热液蚀变作用[J].岩石学报,31(11):3405-3419.
    周德安.1988.460矿床富矿形成中的叠加成矿作用[J].铀矿地质,4(3):139-144.
    周永章.1993.微破裂-缝合机制及热液围岩蚀变过程中元素迁移的质量平衡估计--以河台金矿田为例[J].矿物岩石地球化学通报,12(3):116-118.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700