新型双稳态压电振动俘能系统的理论建模与实验研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Theoretical modeling and experimental study of a new bistable piezoelectric vibration energy harvesting system
  • 作者:张旭辉 ; 赖正鹏 ; 吴中华 ; 谭厚志 ; 左萌 ; 樊红卫
  • 英文作者:ZHANG Xu-hui;LAI Zheng-peng;WU Zhong-hua;TAN Hou-zhi;ZUO Meng;FAN Hong-wei;School of Mechanical Engineering,Xi′an University of Science and Technology;
  • 关键词:压电俘能器 ; 振动能量采集器 ; 双稳态 ; 多悬臂梁 ; 力-电-磁耦合模型
  • 英文关键词:captive device;;vibration energy harvester;;bistable;;multi-cantilever beam;;force-electro-magnetic coupling model
  • 中文刊名:ZDGC
  • 英文刊名:Journal of Vibration Engineering
  • 机构:西安科技大学机械工程学院;
  • 出版日期:2019-02-15
  • 出版单位:振动工程学报
  • 年:2019
  • 期:v.32
  • 基金:国家绿色制造系统集成项目(工信部节函[2017]327号);; 陕西省创新能力支撑计划项目(2018TD-032);; 陕西省重点研发计划项目(2018ZDCXL-GY-06-04)
  • 语种:中文;
  • 页:ZDGC201901011
  • 页数:10
  • CN:01
  • ISSN:32-1349/TB
  • 分类号:91-100
摘要
针对线性压电俘能系统的共振频带窄、俘能方向单一、发电效率低等问题,设计了一种双稳态磁力耦合多悬臂梁俘能结构。利用广义Hamilton变分原理建立了系统分布式力-电-磁耦合模型,结合数值计算和实验验证方法揭示了磁铁间距、外界振动激励条件对压电俘能系统响应特性的影响规律。研究结果表明:在合适的磁距和外界振动激励条件下,系统的输出电压可达18V,是线性压电振动俘能系统的3.5倍,有效工作频带是线性压电振动俘能系统的3.1倍,说明双稳态压电振动俘能系统具有明显拓宽有效工作频带和提升发电效率的能力,为压电俘能系统工程化应用提供了理论依据。
        To overcome the shortcomings of linear piezoelectric capture system such as having narrow resonance frequency band,single direction of capture energy and low efficiency of power generation,a bistable force-magnetic coupling multi-cantilever structure is designed.Based on the generalized Hamilton variational principle,a distributed force-electric-magnetic coupling model is established.By combing numerical calculation with experimental verification,we revealed the influence of magnet spacing and external vibration excitation conditions on the response characteristics of piezoelectric capture system.The results of the study show that under suitable magnetic distance and external vibration excitation conditions,the output voltage of the system can reach 18 V,which is 3.5 times of the linear piezoelectric vibration capture system,and the effective working frequency band is 3.1 times of the linear piezoelectric vibration capture system.These results fully demonstrate the capability of the bistable piezoelectric vibration capture system to broaden the effective frequency band and improving the power generation efficiency.It provides a theoretical basis for engineering application of piezoelectric energy harvesting system.
引文
[1]陈仲生.压电式振动能量俘获理论与方法[M].北京:国防工业出版社,2017.Chen Zhongsheng.Theories and Methods of Piezoelectric Vibration Energy Harvesting[M].Beijing:National Defence Industry Press,2017.
    [2]陈仁文,任龙,夏桦康,等.多方向宽频带压电式振动能量采集器研究进展[J].仪器仪表学报,2014,35(12):2641-2652.Chen Renwen,Ren Long,Xia Huakang,et al.Research progress of multi-directional broadband piezoelectric vibration energy collector[J].Journal of Instrument&Instrumentation,2014,35(12):2641-2652.
    [3]阚君武,李洋,王淑云.旋转激励磁铁数对压电俘能器输出性能的影响[J].光学精密工程,2014,22(7):1864-1870.Kan Junwu,Li Yang,Wang Shuyun.Influence of NRM on energy-generation performance of piezoelectric harvesters[J].Optics and Precision Engineering,2014,22(7):1864-1870.
    [4]代显智,张章,刘小亚,等.非线性宽频振动能量采集技术的研究进展[J].中国科学:技术科学,2016,46(08):791-807.Dai Xianzhi,Zhang Zhang,Liu Xiaoya,et al.Advances in nonlinear broadband vibration energy acquisition technology[J].Science in China:Technology Science,2016,46(08):791-807.
    [5]郭抗抗,曹树谦.压电发电悬臂梁的非线性动力学建模及响应分析[J].动力学与控制学报,2014,12(1):18-23.Guo Kangkang,Cao Shuqian.Nonlinear dynamic modeling and response analysis of piezoelectric cantilever beam[J].Journal of Dynamics and Control,2014,12(1):18-23.
    [6]唐炜,王小璞,曹景军.非线性磁式压电振动能量采集系统建模与分析[J].物理学报,2014,63(24):72-88.Tang Wei,Wang Xiaopu,Cao Jingjun.Modeling and analysis of nonlinear magnetic piezoelectric vibration energy acquisition system[J].Acta Physica Sinica,2014,63(24):72-88.
    [7]Erturk A,Inman D J.Broadband piezoelectric power generation on high-energy orbits of the bistable Duffing oscillator with electromechanical coupling[J].Journal of Sound and Vibration,2011,330(10):2339-2353.
    [8]AndòB,Baglio S,Latorre L,et al.Magnetically-coupled cantilevers with antiphase bistable behavior for kinetic energy harvesting[J].Procedia Engineering,2012,47:1065-1068.
    [9]AndòB,Baglio S,Maiorca F,et al.Analysis of two dimensional,wide-band,bistable vibration energy harvester[J].Sensors and Actuators A:Physical,2013,202:176-182.
    [10]Tang Lihua,Yang Yaowen.A nonlinear piezoelectricenergy harvester with magnetic oscillator[J].Applied Physics Letters,2012,101(9):094102.
    [11]Ravindra Masana,Mohammed F Daqaq.Relative performance of a vibratory energy harvester in mono-and bi-stable potentials[J].Journal of Sound and Vibration,2011,330(24):6036-6052.
    [12]展永政,王光庆.双自由度压电振动能量采集器的力-电输出特性分析[J].振动工程学报,2014,27(6):871-877.Zhan Yongzheng,Wang Guangqin.Analysis of forceelectricity output characteristics of double-freedom piezoelectric vibration energy harvester[J].Journal of Vibration Engineering,2014,27(6):871-877.
    [13]石朝成,李响,袁天辰,等.双梁磁力压电振动能量采集器的实验和仿真[J].动力学与控制学报,2017,15(01):68-74.Shi Caocheng,Li Xiang,Yuan Tianchen,et al.Experiment and simulation of dual-beam magnetic piezoelectric vibration energy collector[J].Journal of Dynamics and Control,2017,15(01):68-74.
    [14]周生喜,曹军义,Alper ERTURK,等.压电磁耦合振动能量俘获系统的非线性模型研究[J].西安交通大学学报,2014,48(01):106-111.Zhou Shengxi,Cao Junyi,Alper ERTURK.Study on nonlinear model of electromagnetic coupling vibration energy capture system[J].Journal of Xi′an Jiaotong University,2014,48(01):106-111.
    [15]Alper Erturk,Daniel J Inman.Piezoelectric Energy Collection[M].2015:158-160.
    [16]薛晓.井下WSN节点自供能与功耗优化关键技术研究[D].武汉:中国地质大学,2015.Xue Xiao.Research on key technologies of self-power supply and power optimization for downhole WSN nodes[D].Wuhan:China University of Geosciences,2015.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700