Endocytosis and Vesicular Transport of Plasmid DNA in Cells During Electric Field-Mediated Gene Delivery
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Endocytosis and Vesicular Transport of Plasmid DNA in Cells During Electric Field-Mediated Gene Delivery
  • 作者:Fan ; Yuan
  • 英文作者:Fan Yuan;Department of Biomedical Engineering,Duke University;
  • 中文刊名:YISX
  • 英文刊名:Journal of Medical Biomechanics
  • 机构:Department of Biomedical Engineering,Duke University;
  • 出版日期:2019-07-15
  • 出版单位:医用生物力学
  • 年:2019
  • 期:v.34
  • 基金:supported by grants from National Institutes of Health ( GM098520 and GM130830);; National Science Foundation ( CBET-1264186)
  • 语种:英文;
  • 页:YISX2019S1032
  • 页数:2
  • CN:S1
  • ISSN:31-1624/R
  • 分类号:22-23
摘要
Pulsed electric field has been used widely as a nonviral approach to improving gene delivery in basic and translational research~([1-2]).The technique has been called electrotransfection(ET),electroporation,electrogene transfer,and gene electroinjection in the literature ~([1,3]).It has a great potential to improve clinical treatment of diseases through delivery of vaccines and therapeutic genes,genome and epigenome editing,and generation of human induced pluripotent stem cells for tissue engineering~([1-3]).During ET,extracellular transport of plasmid DNA(pDNA)relies on electrophoresis,which is critical for applications in vivo.However,mechanisms of intracellular transport remain to be understood.The lack of understanding has hindered the translation of ET technology to the clinic.It is well known that pulsed electric field can generate transient hydrophilic pores in the plasma membrane(i.e.,electroporation)that permit membrane-impermeant molecules to enter cells.Although the pores have yet to be visualized directly under a microscope,the electric field-induced membrane permeabilization has been demonstrated through experimental measurements of electrical conductance of synthetic lipid membranes and plasma membranes,direct observation of fluorescent markers crossing the membranes facing both cathode and anode,and numerical simulations of the membrane permeabilization~([1,3]).Results from the simulations have predicted that the cutoff size of the pores is on the order of a few hundred nanometers,and the lifetime of the pores that are larger than 100 nm is on the order of 10 msec.Although these data provide a solid evidence of the membrane permeabilization,recent studies have demonstrated that the generation of the pores is insufficient for ET~([1,4]).The reasons are as follows.First,the lifetime of the pores is several orders of magnitude shorter than the time scale for pDNA uptake,which is on the order of 10 min.Second,complex formation between pDNA and plasma membrane is a necessary condition for successful gene transfer.Third,inhibition of clathrin mediated endocytosis or Rac-1 dependent micropinocytosis can reduce the amount of pDNA internalized by cells ~([1]).Finally,we demonstrate that few pDNA molecules can be observed in the cytosol that are not associated with the intracellular vesicles~([5]),suggesting that pDNA uptake is mediated by endocytosis.In addition to the internalization,ET requires the pDNA in the cytoplasm to reach the nucleus.To understand mechanisms of intracellular trafficking of pDNA,we have examined time-dependent pDNA distributions in cells,quantitatively determined percentages of pDNA molecules associated with different endocytic compartments using transmission electron microscopy(TEM),and investigated different approaches to facilitate cytoplasmic transport and nuclear entry of pDNA.Our data have shown that electrotransfected pDNA is located in different vesicular ultrastructures at or near the plasma membrane at10 min post application of electric pulses~([5]).In the hard-to-transfect cells(e.g.,4T1),pDNA penetration from the cell surface is less active,and the total number of vesicular structures associated with pDNA is low,compared to those in the easyto-transfect cells(e.g.,COS7).Our data have also shown that macropinocytosis is the most common pathway shared by all types of cells.To investigate how improve pDNA transport in cells,we have photochemically treated cells to non-specifically induce pDNA escape from intracellular vesicles,or blocked endosome and autophagic vacuole maturation through treatment of cells with Bafilomycin Al,an inhibitor of vacuolar H+ATPase.Our data demonstrate that both treatments can lead to reduction of ET efficiency although the treatment for inducing endosomal escape can enhance poly-L-lysine mediated gene delivery.These data suggest that the vesicles play an important role in protecting the naked pDNA during intracellular trafficking.The nuclear envelope is another major barrier to ET.To facilitate the nuclear entry,we have examined three different approaches.One is to synchronize the nuclear envelope breakdown(NEBD)prior to ET; the second approach is to pre-treat cells with a nuclear pore dilating agent(i.e.,trans-1,2-cyclohexanediol); and the third one is to incorporate a nuclear targeting sequence(NTS)(i.e.,SV40)into the pDNA.Our data have shown that the synchronization of the NEBD can significantly improve the ET efficiency without compromising the cell viability.The nuclear pore dilation can improve the ET as well but the dilating agent is cytotoxic.The incorporation of NTS into pDNA can improve the gene delivery efficiency but the improvement is cell-type dependent,suggesting that the NTS has to be screened and optimized for the cells of interest.In summary,the transient pores in the plasma membrane induced by the electric pulses will enable cellular uptake of membrane-impermeant molecules up to the size of small proteins.Larger molecules(e.g.,pDNA)have to be internalized via endocytic processes triggered by the pulsed electric field.Within the cells,pDNA transport is mediated by vesicles and can be blocked by non-specific escape from vesicles or inhibition of vesicle maturation.The nuclear entry of pDNA can be enhanced,without compromising cell viability,through the use of the NTS or the synchronization of the NEBD.
        Pulsed electric field has been used widely as a nonviral approach to improving gene delivery in basic and translational research~([1-2]).The technique has been called electrotransfection(ET),electroporation,electrogene transfer,and gene electroinjection in the literature ~([1,3]).It has a great potential to improve clinical treatment of diseases through delivery of vaccines and therapeutic genes,genome and epigenome editing,and generation of human induced pluripotent stem cells for tissue engineering~([1-3]).During ET,extracellular transport of plasmid DNA(pDNA)relies on electrophoresis,which is critical for applications in vivo.However,mechanisms of intracellular transport remain to be understood.The lack of understanding has hindered the translation of ET technology to the clinic.It is well known that pulsed electric field can generate transient hydrophilic pores in the plasma membrane(i.e.,electroporation)that permit membrane-impermeant molecules to enter cells.Although the pores have yet to be visualized directly under a microscope,the electric field-induced membrane permeabilization has been demonstrated through experimental measurements of electrical conductance of synthetic lipid membranes and plasma membranes,direct observation of fluorescent markers crossing the membranes facing both cathode and anode,and numerical simulations of the membrane permeabilization~([1,3]).Results from the simulations have predicted that the cutoff size of the pores is on the order of a few hundred nanometers,and the lifetime of the pores that are larger than 100 nm is on the order of 10 msec.Although these data provide a solid evidence of the membrane permeabilization,recent studies have demonstrated that the generation of the pores is insufficient for ET~([1,4]).The reasons are as follows.First,the lifetime of the pores is several orders of magnitude shorter than the time scale for pDNA uptake,which is on the order of 10 min.Second,complex formation between pDNA and plasma membrane is a necessary condition for successful gene transfer.Third,inhibition of clathrin mediated endocytosis or Rac-1 dependent micropinocytosis can reduce the amount of pDNA internalized by cells ~([1]).Finally,we demonstrate that few pDNA molecules can be observed in the cytosol that are not associated with the intracellular vesicles~([5]),suggesting that pDNA uptake is mediated by endocytosis.In addition to the internalization,ET requires the pDNA in the cytoplasm to reach the nucleus.To understand mechanisms of intracellular trafficking of pDNA,we have examined time-dependent pDNA distributions in cells,quantitatively determined percentages of pDNA molecules associated with different endocytic compartments using transmission electron microscopy(TEM),and investigated different approaches to facilitate cytoplasmic transport and nuclear entry of pDNA.Our data have shown that electrotransfected pDNA is located in different vesicular ultrastructures at or near the plasma membrane at10 min post application of electric pulses~([5]).In the hard-to-transfect cells(e.g.,4T1),pDNA penetration from the cell surface is less active,and the total number of vesicular structures associated with pDNA is low,compared to those in the easyto-transfect cells(e.g.,COS7).Our data have also shown that macropinocytosis is the most common pathway shared by all types of cells.To investigate how improve pDNA transport in cells,we have photochemically treated cells to non-specifically induce pDNA escape from intracellular vesicles,or blocked endosome and autophagic vacuole maturation through treatment of cells with Bafilomycin Al,an inhibitor of vacuolar H+ATPase.Our data demonstrate that both treatments can lead to reduction of ET efficiency although the treatment for inducing endosomal escape can enhance poly-L-lysine mediated gene delivery.These data suggest that the vesicles play an important role in protecting the naked pDNA during intracellular trafficking.The nuclear envelope is another major barrier to ET.To facilitate the nuclear entry,we have examined three different approaches.One is to synchronize the nuclear envelope breakdown(NEBD)prior to ET; the second approach is to pre-treat cells with a nuclear pore dilating agent(i.e.,trans-1,2-cyclohexanediol); and the third one is to incorporate a nuclear targeting sequence(NTS)(i.e.,SV40)into the pDNA.Our data have shown that the synchronization of the NEBD can significantly improve the ET efficiency without compromising the cell viability.The nuclear pore dilation can improve the ET as well but the dilating agent is cytotoxic.The incorporation of NTS into pDNA can improve the gene delivery efficiency but the improvement is cell-type dependent,suggesting that the NTS has to be screened and optimized for the cells of interest.In summary,the transient pores in the plasma membrane induced by the electric pulses will enable cellular uptake of membrane-impermeant molecules up to the size of small proteins.Larger molecules(e.g.,pDNA)have to be internalized via endocytic processes triggered by the pulsed electric field.Within the cells,pDNA transport is mediated by vesicles and can be blocked by non-specific escape from vesicles or inhibition of vesicle maturation.The nuclear entry of pDNA can be enhanced,without compromising cell viability,through the use of the NTS or the synchronization of the NEBD.
引文
[1] Cervia LD,Yuan F(2018)"Current Progress in Electrotransfection as a Nonviral Method for Gene Delivery."Mol Pharmaceut,15(9):3617-24.
    [2] Heller R,Heller LC(2015)"Gene electrotransfer clinical trials."Adv Genet,89:235-62.
    [3] Henshaw JW,Yuan F(2008)"Field distribution and DNA transport in solid tumors during electric field-mediated gene delivery"J Pharm Sci,97(2):691-711.
    [4] Wu M,Yuan F(2011)"Membrane binding of plasmid DNA and endocytic pathways are involved in electrotransfection of mammalian cells."PLo S One,6(6):e20923.
    [5] Wang L,Miller SE,Yuan F(2018)"Ultrastructural Analysis of Vesicular Transport in Electrotransfection."Microsc Microanal,24(5):553-63.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700