蔬菜变态根茎发育的分子机理研究进展
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:A Review on Molecular Mechanism of the Modified Roots or Stems Development in Vegetables
  • 作者:孙玉燕 ; 李锡香
  • 英文作者:SUN Yu-yan;LI Xi-xiang;Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences/Beijing Research Station of Vegetable Crop Gene Resource and Germplasm Enhancement,Ministry of Agriculture;
  • 关键词:蔬菜 ; 变态根茎 ; 发育 ; 分子机理
  • 英文关键词:vegetables;;modified roots or stems;;development;;molecular mechanism
  • 中文刊名:ZNYK
  • 英文刊名:Scientia Agricultura Sinica
  • 机构:中国农业科学院蔬菜花卉研究所/农业部蔬菜作物基因资源与种质创新北京科学观测实验站;
  • 出版日期:2015-03-16 09:26
  • 出版单位:中国农业科学
  • 年:2015
  • 期:v.48
  • 基金:“十二五”国家科技支撑计划(2013BAD01B04);; 国家“863”计划(2012AA021801-4);; 中国农业科学院创新工程项目(CAAS-ASTIP-2013-IVFCAAS);; 农业部园艺作物生物学与种质创制重点实验室项目
  • 语种:中文;
  • 页:ZNYK201506013
  • 页数:15
  • CN:06
  • ISSN:11-1328/S
  • 分类号:128-142
摘要
变态根茎是许多蔬菜作物重要的产品器官。阐明变态根茎的形成不仅是植物发育生物学研究的重要内容,也是提高相关蔬菜作物产量和品质的重要保障。近年来,关于蔬菜变态根茎形成机理的研究已经取得了重要进展。本文主要以代表性根茎类蔬菜作物萝卜、芜菁、马铃薯、莲藕、榨菜、山药、芋艿为对象,就其变态根茎发育的遗传和分子机理,包括变态根茎发育相关性状的遗传及QTL定位,形态建成的物质和能量代谢,细胞周期及细胞膨大,植物激素、光周期、转录因子等调控机制的研究进展进行了综述。蔬菜变态根茎发育相关性状多为寡基因或多基因控制的数量性状。目前,一系列发育相关性状的QTL位点被鉴定,一些重要性状的连锁标记被开发。作为形态建成物质的淀粉、糖类和蛋白质为变态根茎的发育提供重要的物质、能量和营养来源,诸多基因参与形态建成物质的代谢。细胞周期作为细胞分裂的调节器,决定细胞数目。细胞周期受细胞周期蛋白(cyclins,CYC)、细胞周期蛋白依赖性激酶(cyclin-dependent protein kinases,CDKs)以及转录因子RB/E2F的调控。细胞膨大决定细胞大小,受扩展蛋白(expansin,EXP)和木葡聚糖内糖基转移酶/水解酶(xyloglucan endotransglucosylase/hydrolases,XTHs)等重要因子调节。植物激素是变态根茎发育的基础调控因子,诸多激素如赤霉素、生长素、脱落酸、细胞分裂素和茉莉酸等参与变态根茎的发育。光周期调控是变态根茎发育的动态信号,大量参与光周期调控的基因,如光敏色素、CONSTANS(CO)、FLOWERING LOCUS T(FT)、APY等在变态根茎形成过程中都起到重要的调控作用。此外,MADS-box、ABF/AREB和homeobox等转录因子也在变态根茎的发育中扮演重要角色。另外,文章就小RNA、表观遗传学、转录组学、蛋白质组学、比较基因组学、全基因组测序和关联分析的研究在变态根茎发育机理中的应用进行了简要介绍。
        Modified roots or stems are the product organs of many important vegetables. To clarify the mechanisms of modified roots or stems formation is not only the main content for plant development biology, but also the guarantee of plant yield and quality improvement. Much progresses have been made in mechanisms of vegetable modified roots or stems development recently. The inheritance and molecular mechanism of modified roots or stems development in vegetable crops including radish, turnip, potato, lotus, mustard, yam and taro were reviewed in this paper. It mainly contained inheritance and QTL of their development associated traits, substances and energy metabolism for morphogenesis, cell cycle and cell expansion, regulation mechanisms including phytohormone, photoperiod and transcription factor effects in modified roots and stems. The related traits of modified roots or stems were controlled by QTL and some molecular markers linked to the important traits have also been developed for marker-assisted selection. Starch, sugar and protein provide the substances, energy and nutrition for modified roots or stems morphogenesis and a set of genes are involved in the metabolism of them. Besides, cell cycle is a temporal regulator of cell division and determines the cell number. Some regulatory proteins including cyclins, cyclin-dependent kinases and RB/E2 F transcription factor are involved in cell cycle regulation. In addition, cell expansion, determining the cell size, is regulated by the expansin and xyloglucan endotransglucosylase/hydrolases. Moreover, plant hormones, such as gibberellin, auxin, abscisic acid, cytokinin and jasmonic acid, are the basic regulation factors involved in modified roots or stems development. Furthermore, photoperiod regulation is the dynamic signal for plant development. A large number of photoperiod related genes including Phytochrome, CONSTANS(GO), FLOWERING LOCUS T(FT) and APY are involved in modified roots or stems development. Lastly, the transcription factors, such as MADS-box, ABF/AREB and homeobox, play vital roles in modified roots or stems development. Meanwhile, the methods and technologies including small RNAs, epigenetics, comparative genomics, whole genome sequencing and genome-wide association study in molecular mechanism study of vegetables abnormal organ development were summaried.
引文
[1]Zaki H E M,Yokoi S,Takahata Y.2010.Identification of genes related to root shape in radish(Raphanus sativus)using suppression subtrasctive hybridization.Breeding Science,2010,60:130-138.
    [2]Kostyn K,Szatowski M,Kulma A,Kosieradzka I,Szopa J.Transgenic potato plants with overexpression of dihydroflavonol reductase can serve as efficient nutrition sources.Journal of Food Chemistry,2014,61:6743-6753.
    [3]汪隆植,何启伟.中国萝卜.北京:科学技术文献出版社.2005:46-47.Wang L Z,He Q W.Chinese Radish.Beijing:Scientific and Techanical Documents Publishing House,2005:46-47.(in Chinese)
    [4]Vartapetian B B,Jackson M.Plant adaptations to anaerobic stress.Annual of Botany,1997,79:3-20.
    [5]路昭亮,柳李旺,龚义勤.萝卜干物重和可溶性总糖含量的遗传分析.南京农业大学学报,2009,32:25-29.Lu S L,Liu L W,Gong Y Q.Genetic analysis of drymatter weight and total soluble sugar contents in radish(Raphanus sativus L.).Journal of Nanjing Agricultural University,2009,32:25-29.(in Chinese)
    [6]童南奎,陈世儒.芥菜几个品种主要经济性状的遗传规律研究.园艺学报,1992,2:151-156.Tong N K,Chen S R.Genetic studies on some important characters of vegetable mustard.Acta Horticulturae Sinica,1992,2:151-156.(in Chinese)
    [7]金黎平.二倍体马铃薯加工品质及重要农艺性状的遗传分析[D].北京:中国农业科学院,2006.Jin L P.Genetic dissection of processing quality and important agronomic traits in dipoid potato(Solanum tuberosum L.)[D].Beijing:Chinese Academy of Agriculture Sciences,2006.(in Chinese)
    [8]姜立杰.芜菁直根膨大性状的AFLP分析[D].杭州:浙江大学,2001.Jiang L J.Analysis of root swelling in turnip(Brassica campestris L.ssp.rapifera Matzg.)using AFLP markers[D].Hangzhou:Zhejiang University,2011.(in Chinese)
    [9]Tsuro M,Suwabe K,Kubo N,Matsumoto S,Hirai M.Mapping of QTL controlling root shape and red pigmentation in radish,Raphanus sativus L.Breeding Science,2008,58:55-61.
    [10]Hashida T,Nakatsuji R,Budahn H,Schrader O,Peterka H,Fujimura T,Kubo N,Masashi Hirai M.Construction of a chromosome-assigned,sequence-tagged linkage map for the radish,Raphanus sativus L.and QTL analysis of morphological traits.Breeding Science,2013,63:218-226.
    [11]宋立君.萝卜遗传连锁图谱构建与主要品质性状QTL分析[D].南京:南京农业大学,2009.Song L J.Construction of a genetic linkage map and QTL analysis of main quality traits in radish(Raphanus sativus L.)[D].Nanjing:Nanjing Agricultural University,2009.(in chinese)
    [12]Zhou J,Fang H,Shan J,Gao X,Chen L,Xie C,Xie T,Liu J.A major QTL located on chromosome V associates with in vitro tuberization in a tetraploid potato population.Moleclar Genetics and Genomics,2014,DOI 10.1007/s00438-014-0832-6.
    [13]Van den Berg J H,Ewing E E,Plaisted R L,McM urry S,Bonierbale M W.QTL analysis of potato tuberization.Theoretical and Applied Genetics,1996,93:307-316.
    [14]Bradshaw J E,Hackett C A,Pande B,Waugh R,Bryan G J.QTL mapping of yield,agronomic and quality traits in tetraploid potato(Solanum tuberosum subsp.tuberosum).Theoretical and Applied Genetics,2008,116:193-211.
    [15]van-Eck H J,Jacobs J M E,Stam P,Ton J,Stiekema W J,Jacobsen E.Multiple alleles for tuber shape in diploid potato detected by qualitative and quantitative genetic analysis using Rflps.Genetics,1994,137:303-309.
    [16]单友蛟,刘杰,卞春松,段绍光,徐建飞,庞万福,金黎平.马铃薯SSR遗传连锁图谱构建及3个重要农艺性状QTL定位.中国蔬菜,2010,18:10-14.Shan Y J,Liu J,Bian C S,Duan S G,Xu J F,Pang W F,Jin L P.Construction of genetic map by SSR markers and QTL analysis of 3important agronomic traits in diploid potato.China Vegetables,2010,18:10-14.(in Chinese)
    [17]张明科,姚远颋,钟蔚丽,何玉科.一个控制芜菁肉质根直径的遗传新位点frs-1.园艺学报,2012,39:977-984.Zhang M K,Yao Y T,Zhong W L,He Y K.A novel locus,frs-1,that controls flesh root diameter of turnip.Acta Horticultutae Sinica,2012,39:977-984.(in Chinese)
    [18]Lou P,Zhao J,Jung S,Shen S,Dunia P,Song X,Mina J,Dick V,Wang X,Maarten K,Guusje B.Quantitative trait loci for flowering time and morphological traits in multiple populations of Brassica rapa.Journal of Experimental Botany,2007,58:4005-4016.
    [19]Kubo N,Saito M,Tsukazaki H,Kondo T,Matsumoto S,Hirai M.Detection of quantitative trait loci controlling morphological traits in Brassica rapa L.Breeding Science,2010,60:164-171.
    [20]Lu G,Cao J,Yu X,Xiang X,Chen H.Mapping QTL for root morphological traits in Brassica rapa L.based on AFLP and RAPD markers.Journal of Applied Genetics,2008,49(1):23-31.
    [21]Quero-García J,Courtois B,Ivancic A,Letourmy P,Risterucci A M,Noyer J L,Feldmann Ph,Lebot V.First genetic maps and QTL studies of yield traits of taro(Colocasia esculenta(L.)Schott).Euphytica,2006,151:187-199.
    [22]Ramchiary N,Padmaja K L,Sharma S,Gupta V,Sodhi Y S,Mukhopadhyay A,Arumugam N,Pental D,Pradhan A K.Mapping of yield influencing QTL in Brassica juncea:implications for breeding of a major oilseed crop of dryland areas.Theoretical and Applied Genetics,2007,115:807-817.
    [23]Yadava S K,Arumugam N,Mukhopadhyay A,Sodhi Y S,Gupta V,Pental D,Pradhan A K.QTL mapping of yield-associated traits in Brassica juncea:meta-analysis and epistatic interactions using two different crosses between east European and Indian gene pool lines.Theoretical and Applied Genetics,2012,125:1553-1564.
    [24]Cao J,Lu G,Jiang L,Cheng L,Xiang L,Chen H.Molecular tagging and mapping of a major linked marker for taproot thickness in a Brassica crop.Journal of Horticultural Science and Biotechnology,2009,84(2):175-180.
    [25]荆赞革.萝卜肉质根根重性状遗传标记分析与膨胀素基因家族的克隆[D].南京:南京农业大学,2009.Jing Z G.Genetic marker analysis of taproot weight and expansin gene family cloning in radish(Raphanus Sativus L.)[D].Nanjing:Nanjing Agricultural University,2009.(in Chinese)
    [26]Fernie A R,Willmitzer L.Molecular and biochemical triggers of potato tuber development.Plant Physiology,2001,127:1459-1465.
    [27]Wang S,Wang X,He Q,Liu X,Xu W,Li L,Gao J,Wang F.Transcriptome analysis of the roots at early and late seedling stages using Illumina paired-end sequencing and development of EST-SSR markers in radish.Plant Cell Reports,2012,31:1437-1447.
    [28]Geigenberger P.Regulation of sucrose to starch conversion in growing potato tubers.Journal of Experimental Botany,2003,54:457-465.
    [29]Rouhier H,Usuda H.Spatial and temporal distribution of sucrose synthase in the radish hypocotyl in relation to thickening growth.Plant Cell Physiology,2001,42:583-593.
    [30]周生茂,曹家树,王玲平,向珣,韦本辉,李杨瑞,方锋学,李文嘉.山药Su Sy基因全长cD NA序列的结构、进化和表达.中国农业科学,2009,42:2458-2468.Zhou S M,Cao J S,Wang L P,Xiang X,Wen B H,Li Y R,Fang F X,Li W J.Structure,evolution and expression of a full-length cD NA sequence of SuS y gene from yam.Scientia Agricultura Sinica,2009,42:2458-2468.(in Chinese)
    [31]Boris K V,Ryzhova N N,Kochieva E Z.Identification and characterization of intraspecific variability of the sucrose synthase gene Sus4 of potato(Solanum tuberosum).Genetika,2011,47:190-198.
    [32]Davies H V,Shepherd L V,Burrell M M,Carrari F,Urbanczyk-Wochniak E,Leisse A,Hancock R D,Taylor M,Viola R,Ross H,McR ae D,Willmitzer L,Fernie A R.Modulation of fructokinase activity of potato(Solanum tuberosum)results in substantial shifts in tuber metabolis.Plant and Cell Physiology,2005,46:1103-1115.
    [33]Chincinska I,Gier K,Krügel U,Liesche J,He H,Grimm B,Harren F J M,Cristescu S M,Kühn C.Photoperiodic regulation of the sucrose transporter St SUT4 affects the expression of circadian-regulated genes and ethylene production.Frontiers in Plant Science,2013,4:1-12.
    [34]Kühn C,Hajirezaei M R,Fernie A R,Roessner-Tunali U,Czechowski T,Hirner B,Frommer W B.The sucrose transporter StS UT1 localizes to sieve elements in potato tuber phloem and influences tuber physiology and development.Plant Physiology,2003,131:102-113.
    [35]Claeyssen E,Dorion S,Clendenning A,He J Z,Wally O,Chen J,Auslender E L,Moison M C,Jolicoeur M,Rivoal J.The futile cycling of hexose phosphates could account for the fact that hexokinase exerts a high control on glucose phosphorylation but not on glycolytic rate in transgenic potato(Solanum tuberosum)roots.Plos One,2013,8:e53898.
    [36]Debast S,Nunes-Nesi A,Hajirezaei M R,Hofmann J,Sonnewald U,Fernie A R,Bornke F.Altering trehalose-6-phosphate content in transgenic potato tubers affects tuber growth and alters responsiveness to hormones during sprouting.Plant Physiology,2011,156:1754-1771.
    [37]Wang L T,Wang A Y,Hsieh C W,Chen C Y,Sung H Y.Vacuolar invertases in sweet potato:molecular cloning,characterization,and analysis of gene expression.Journal of Agricultural and Food Chemistry,2005,53(9):3672-3678.
    [38]Li L,Tacke E,Hofferbert H,Lubeck J,Strahwald J,Astrid M.Validation of candidate gene markers for marker-assisted selection of potato cultivars with improved tuber quality.Theoretical and Applied Genetics,2013,126:1039-1052.
    [39]Liu X,Lin Y,Liu J,Song B,Ou Y,Zhang H,Li M,Xie C.St InvI nh2as an inhibitor of StvacI NV1 regulates the cold-induced sweetening of potato tubers by specifically capping vacuolar invertase activity.Plant Biotechnology Journal,2013,11:640-647.
    [40]Bustos R,Fahy B,Hylton C M,Seale R,Nebane N M,Edwards A,Martin C,Smith A M.Starch granule initiation is controlled by a heteromultimeric isoamylase in potato tubers.Processing of the National Academy of Sciences of the United States of America,2004,101:2215-2220.
    [41]Tiessen A,Hendriks J H M,Sitt M,Branscheid A,Gibon Y,Farre E M,Geigenberger P.Starch synthesis in potato tubers is regulated by post-translational redox modification of ADP-glucose pyrophosphorylase:A novel regulatory mechanism linking starch synthesis to the sucrose supply.The Plant Cell,2002,14:2191-2213.
    [42]周生茂.山药不同基因型地下块茎糖类和酚类物质形成、调控及相关基因分离的研究[D].杭州:浙江大学,2009.Zhou S M.Studies on biosyntheses,regulations,and gene isolations involved in carbohydrates and phenols in underground tubers of different genotypes of yams[D].Hangzhou:Zhenjiang University,2009.(in Chinese)
    [43]Wang Y,Fan G,Liu Y,Sun F,Shi C,Liu X,Peng J,Chen W,Huang X,Cheng S,Liu Y,Liang X,Zhu H,Bian C,Zhong L,Lv T,Dong H, Liu W,Zhong X,Chen J,Quan Z,Wang Z,Tan B,Lin C,Mu F,Xu X,Ding Y,Guo A,Wang J,Ke W.The scared lotus genome provides insights into the evolution of flowering plants.The Plant Journal,2013,76:557-567.
    [44]Wang Y,Wang Y,Ma J,Wang Q,Tao P,Su Y.Cloning and bioinformatic analysis of potatoα-amylase gene amyA 1.Genomics and Applied Biology,2010,29:1019-1025.
    [45]Paull R E,Carroll A,Chen N J.Lotus cell walls and the genes involved in its synthesis and modification.Tropical Plant Biology,2013,6:152-160.
    [46]McK ibbin R S,Muttucumaru N,Paul M J,Powers S J,Burrell M M,Coates S,Purcell P C,Tiessen A,Geigenberger P,Halford N G.Production of high-starch,low-glucose potatoes through over-expression of the metabolic regulator Sn RK1.Plant Biotechnology Journal,2006,4:409-416.
    [47]Huang X,Nazarian-Firouzabadi F,Vincken J,Ji Q,Visser R G F,Trindad L M.Expression of an amylosucrase gene in potato results in larger starch granules with novel properties.Planta,2014,240:409-421.
    [48]Lu Y,Li L,Zhou Y,Gao Q,Liang G,Chen X,Qi X.Cloning and Characterization of the Wx Gene Encoding a Granule-Bound Starch Synthase in Lotus(Nelumbo nucifera Gaertn).Plant Molecular Biology Reporter,2012,30:1210-1217.
    [49]Gu C,Wang L,Zhang L,Liu Y,Yang M,Yuan Z,Li S,Han Y.Characterization of genes encoding granule-bound starch synthase in sacred lotus reveals phylogenetic affinity of Nelumbo to Proteales.Plant Molecular Biology Reporter,2013,31:1157-1165.
    [50]Hirschberg H J,Simons J W,Dekker N,Egmond M R.Cloning,expression,purification and characterization of patatin,a novel phospholipase A.European Journal of Biochemistry,2001,268:5037-5044.
    [51]Tsai W,Jheng Y,Chen K,Lin K,Ho Y,Yanga C,Lin Ka.Molecular cloning,structural analysis and mass spectrometric identification of native dioscorins of various yam species.Journal of the Science of Food and Agriculture,2013,93:761-770.
    [52]Gupta A K,Singh J,Kaur N.Sink development,sucrose metabolising enzymes and carbohydrate status in turnip(Brassica rapa L.).Acta Physiologiae Plantarum,2001,23:31-36.
    [53]王玮,龚义勤,柳李旺,王燕,荆赞革,黄丹琼,汪隆植.萝卜肉质根膨大过程中糖含量及蔗糖代谢相关酶活性分析.园艺学报,2007,34:1313-1316.Wang W,Gong Y Q,Liu L W,Wang Y,Jing Z G,Wang L Z.Changes of sugar content and sucrose metabolizing enzyme activities during fleshy taproot development in radish(Raphanus sativus L.).Acta Horticulturae Sinica,2007,34:1313-1316.(in Chinese)
    [54]李良俊,张晓冬,潘恩超,孙磊,谢科,顾丽,曹碚生.莲藕膨大过程中淀粉合成相关酶的活性变化及其与淀粉积累的关系.中国农业科学,2006,39(11):2307-2312.Li L J,Zhang X D,Pan E C,Sun L,Xie K,Gu L,Cao P S.Relationship of starch synthesis with it’s related enzymes’activities during rhizome development of lotus(Nelumbo nucifera Gaertn).Scientia Agricultura Sinica,2006,39(11):2307-2312.(in Chinese)
    [55]梁任繁,李创珍,张娟,何龙飞,韦本辉,甘秀芹,何虎翼.山药块茎发育中物质积累及相关代谢酶变化.作物学报,2011,37(5):903-910.Liang R F,Li C Z,Zhang J,He L F,Wei B H,Gan X Q,He H Y.Changes of matter accumulation and relative enzymatic activity during yam tuber development.Acta Agronmica Sinca,2011,37(5):903-910.(in Chinese)
    [56]Shewry P R.Tuber storage proteins.Annals of Botany,2003,91:755-769.
    [57]Koda Y,Kikuta Y.Wound_induced accumulation of jasmolic acid in tissues of potato tubers.Plant Cell Physiology,1994,35:751-756.
    [58]Liu X,Rocha-Sosa M,Hummel S,Frommer W B.A detailed study of the regulation and evolution of the two classes of patatin genes in Solanum tuberosum L.Plant Molecular Biology,1991,17(6):1139-1154.
    [59]Logemann J,Mayer J E,Schell J,Willmitzer L.Differential expression of genes in potato tubers after wounding.Processing of the National Academy of Sciences of the United States of America,1988,84:1136-1140.
    [60]Jefferson R J,Goldsbrough A,Bevan M.Transcriptional regulation of a patatin‐1 gene in potato.Plant Molecular Biology,1990,14:995-1006.
    [61]Zourelidou M,de Torres-Zabala M,Smith C,Bevan M W.Storekeeper defines a new class of plant‐specific DNA‐binding proteins and is a putative regulator of patatin expression.The Plant Journal,2002,30:489-497.
    [62]Perrot-Rechenmann C.Cellular response to auxin:division versus expansion.Cold Spring Harbor Perspectives in Biology,2010,2:a001446.
    [63]Joubes J,Chevalier C.Endoreduplication in higher plants.Plant Molecular Biology,2000,43:735-745.
    [64]Sugimoto-Shirasu K,Roberts K.‘Big it up’:endoreduplication and cell-size control in plants.Current Opinion in Plant Biology,2003,6:544-553.
    [65]Francis D.The plant cell cycle-15 years on.New phytologist,2007,174:261-278.
    [66]Lutova L A,Dolgikh E A,Dodueva I E,Osipova M A,Llina E L.Investigation of systemic control of plant cell division and differentiation in the model of tumor growth in radish.Genetika,2012,44(8):1075-1083.
    [67]Shi H,Wang L L,Sun L T,Dong L L,Liu B,Chen L P.Cell division and endoreduplication play important roles in stem swelling of tuber mustard(Brassica juncea Coss.var.tumida Tsen et Lee).Plant Biology,2012,14:956-963.
    [68]Nakagami H,Kawamura K,Sugisaka K,Sekine M,Shinmyo A.Phosphorylation of retinoblastoma-related protein by the cyclin D/cyclin-dependent kinase complex is activated at the G1/S-phase transition in tobacco.The Plant Cell,2002,14:1847-1857.
    [69]Menges M,De Jager S M,Gruissem W,Murray J A H.Global analysis of the core cell cycle regulators of Arabidopsis identifies novel genes,reveals multiple and highly specific profiles of expression and provides a coherent model for plant cell cycle control.The Plant Journal,2005,41:546-566.
    [70]Umeda M,Shimotohno A,Yamaguchi M.Control of cell division and transcription by cyclin-dependent kinase-activating kinases in plants.Plant Cell Physiology,2005,46:1437-1442.
    [71]Boudolf V,Vlieghe K,Beemster G T S,Magyar Z,Torres Acosta J A,Maes S,Van Der S E,Inze D,De Veylder L.The plant-specific cyclin-dependent kinase CDKB1;1 and transcription factor E2Fa-DPa control the balance of mitotically dividing and endoreduplicating cells in Arabidopsis.The Plant Cell,2004,16:2683-2692.
    [72]Leene J V,Boruc J,De J G,Russinova E,De V L.A kaleidoscopic view of the arabidopsis core cell cycle interactome.Trends in Plant Science,2011,16:141-150.
    [73]Li Y,Jones L,McQ ueen-Mason S.Expansins and cell growth.Current Opinion in Plant Biology,2003,6:603-610.
    [74]Cosgrove D J.Loosening of plant cell walls by expansins.Nature,2000,407:321-326.
    [75]王曼玲,朱虹琳,董臣,刁英,周明全,胡中.莲膨胀素基因的克隆及其序列分析.分子植物育种,2006,4:640-644.Wang M L,Zhu H L,Dong C,Diao Y,Zhou M Q,Hu Z.Molecular cloning and analysis of expansin gene in lotus.Molecular Plant Breeding,2006,4:640-644.(in Chinese)
    [76]荆赞革,柳李旺,龚义勤,姜立娜,孙新菊,周艳孔.萝卜扩展蛋白基因Rs EXPB1克隆与表达特征分析.分子植物育种,2009,7(4):801-805.Jing Z G,Liu L W,Gong Y Q,Jiang L N,Sun X J,Zhou Y K. Cloning and expression characterization of the expansin gene Rs EXPB1 in radish.Molecular Plant Breeding,2009,7(4):801-805.(in Chinese)
    [77]Jung J,O’Donoghue E M,Dijkwel P P,Brummell D A.Expression of multiple expansin genes is associated with cell expansion in potato organs.Plant Science,2010,179:77-85.
    [78]Sun T,Zhang Y,Chai T.Cloning,characterization,and expression of the BjE XPA1 gene and its promoter region from Brassica juncea L.Plant Growth Regulation,2011,64:39-51.
    [79]Lieven D,John C L,Arp S.Molecular control and function of endoreplication in development and physiology.Trends in Plant Science,2011,16:624-634.
    [80]董丽丽.茎瘤芥茎的解剖学与细胞学研究[D].杭州:浙江大学,2010.Dong L L.Anatomical and cytological studies on stem swelling in brassica juncea Var.tumida Tsen et Lee.[D].Hangzhou:Zhenjiang University,2010.(in Chinese)
    [81]Gray W M.Hormonal regulation of plant growth and development.Plos Biology,2004,2(9):e311.
    [82]Roumeliotis E,Visser R G F,Bachem C W B.A crosstalk of auxin and GA during tuber development.Plant Signaling&Behavior,2012,7(10):1360-1363.
    [83]Carrera E,Bou J,García-Martínez J L,Prat S.Changes in GA20-oxidase gene expression strongly affect stem length,tuber induction and tuber yield of potato plants.The Plant Journal,2000,22:247-256.
    [84]Kloosterman B,Navarro C,Bijsterbosch G,Lange T,Prat S,Visser R G F,Bachem C W B.St GA2ox1 is induced prior to stolon swelling and controls GA levels during potato tuber development.The Plant Journal,2007,52(2):362-373.
    [85]Bou-Torrent J,Martínez-García J F,García-Martínez J L,Prat S.Gibberellin A1 metabolism contributes to the control of photoperiod-mediated tuberization in potato.Plos One,2011,6:e24458.
    [86]Nishijima T,Sugii H,Fukino N,Mochizuki T.Aerial tubers induced in turnip(Brassica rapa L.var.rapa(L.)Hartm.)by gibberellin treatment.Scientia Horticulturae,2005,105:423-433.
    [87]Kim S K,Lee S C,Shin D H,Jang S W,Nam J W,Park T S,Lee I J.Quantification of endogenous gibberellins in leaves and tubers of Chinese yam,Dioscorea opposita Thunb.cv.Tsukune during tuber enlargement.Plant Growth Regulation,2003,39(2):125-130.
    [88]Faivre-Rampant O,Cardle L,Marshall D,Viola R,Taylor M A.Changes in gene expression during meristem activation processes in Solanum tuberosum with a focus on the regulation of an auxin response factor gene.Journal of Experimental Botany,2004,55:613-622.
    [89]Kloosterman B,Vorst O,Hall R D,Visser R G,Bachem C W.Tuber on a chip:differential gene expression during potato tuber development.Plant Biotechnology Journal,2005,3:505-519.
    [90]Roumeliotis E,Kloosterman B,Oortwijn M,Kohlen W,Bouwmeester H J,Visser R G F,Bachem C W B.The effects of auxin and strigolactones on tuber initiation and stolon architecture in potato.Journal of Experimental Botany,2012,63(12):4539-4547.
    [91]García M N M,Stritzler M,Capiati D A.Heterologous expression of Arabidopsis ABF4 gene in potato enhances tuberization through ABA-GA crosstalk regulation.Planta,2014,239(3):615-631.
    [92]Sun Q,Zhou G,Cai Y,Fan Y,Zhu X,Liu Y,He X,Shen J,Jiang H,Hu D,Pan Z,Xiang L,He G,Dong D,Yang J.Transcriptome analysis of stem development in the tumourous stem mustard Brassica juncea var.tumida Tsen et Lee by RNA sequencing.BMC Plant Biology,2012,12:53.
    [93]Tao G,Letham D S,Yong J W H,Zhang K,John P C,Schwartz O,Wong S C,Farquhar G D.Promotion of shoot development and tuberisation in potato by expression of a chimaeric cytokinin synthesis gene at normal and elevated CO2 levels.Functional Plant Biology,2010,37:43-54.
    [94]Aung L H.Growth Substances and Environment on the Development of Vegetative Storage Organs.In:Purohit SS(ed)hormonal regulation of plant growth and development.Agro Botanical Publishers,Bikaner,1990:91-106.
    [95]Abdala G,Castro G,Miersch O,Pearce D.Changes in jasmonate and gibberellin levels during development of potato plants(Solanum tuberosum).Plant Growth Regulation,2002,36:121-126.
    [96]Vreugdenhil D,Struik P C.An integrated view of the hormonal regulation of tuber formation in potato(Solanum tuberosum).Physiologia Plantarum,1989,75:525-531.
    [97]Sohn H B,Lee H Y,Seo J S,Jung C,Jeon J H,Kim J,Lee Y W,Lee J S,Cheong J,Choi Y D.Overexpression of jasmonic acid carboxyl methyltransferase increases tuber yield and size in transgenic potato.Plant Biotechnology Reports,2011,5(1):27-34.
    [98]Pasare S A,Ducreux L J M,Morris W L,Campbell R,Sharma S K,Roumeliotis E,Kohlen W,van der Krol S,Bramley P M,Roberts A G,Fraser P D,Taylor M A.The role of the potato(Solanum tuberosum)CCD8 gene in stolon and tuber development.New Phytologist,2013,198:1108-1120.
    [99]Navarro C,Abelenda J A,Cruz-Oro E,Cuellar C A,Tamaki S,Silva J,Shimamoto K,Prat S.Control of flowering and storage organ formation in potato by FLOWERING LOCUS T.Nature,2011,478:119-123.
    [100]Rodríguez-Falcón M,Bou J,Prat S.Seasonal control of tuberization in potato:conserved elements with the flowering response.Annual Review of Plant Biology,2006,57:151-180.
    [101]Gonzalez-Schain N D,Diaz-Mendoza M,Zurczak M,Suarez-Lopez P.Potato CONSTANS is involved in photoperiodic tuberization in a graft-transmissible manner.The Plant Journal,2012,70:678-690.
    [102]刘斌.榨菜瘤状茎膨大相关基因筛选及种质创新[D].杭州:浙江大学,2013.Liu B.Screening of tumor-like stem swelling related genes in tuber mustard(Brassica juncea)and its germplasm innovation.[D].Hangzhou:Zhenjiang University,2013.(in Chinese)
    [103]Kang S G,Hannapel D J.A novel MADS-box gene of potato(Solanum tuberosum L.)expressed during the early stages of tuberization.Plant Molecular Biology,1996,31:379-386.
    [104]Garcia M N M,Giammaria V,Grandellis C,Grandellis C,Téllez-I?ón M T,Ulloa R M,Capiati D A.Characterization of St ABF1,a stress-responsive b ZIP transcription factor from Solanum tuberosum L.that is phosphorylated by St CDPK2 in vitro.Planta,2012,235:761-778.
    [105]Chen H,Rosin F M,Prat S,Hannapel D J.Interacting transcription factors from the three-amino acid loop extension superclass regulate tuber formation.Plant Physiology,2003,132(3):1391-1404.
    [106]Chen H,Banerjee A K,Hannapel D J.The tandem complex of BEL and KNOX partners is required for transcriptional repression of ga20ox1.The Plant Journal,2004,38:276-284.
    [107]Zhang R,Marshall D,Bryan G J,Hornyik C.Identification and characterization of mi RNA transcriptome in potato by highthroughput sequencing.Plos One,2013,8(2):e57233.
    [108]Xu L,Wang Y,Xu Y,Wang L,Zhai L,Zhu X,Gong Y,Ye S,Liu L.Identification and characterization of novel and conserved micro RNAs in radish(Raphanus sativus L.)using high-throughput sequencing.Plant Science,2013,201-202:108-114.
    [109]Sunkar R,Chinnusamy V,Zhu J,Zhu J K.Small RNAs as big players in plant abiotic stress responses and nutrient deprivation.Trends in Plant Science,2007,12:301-309.
    [110]Vanyushin B F,Ashapkin V V.DNA methylation in higher plants:Past,present and future.Biochimica et Biophysica Acta,2011,1809(8):360-368.
    [111]Cheng L,Li S,Yin J,Li L,Chen X.Genome-wide analysis of differentially expressed genes relevant to rhizome formation in lotus root(Nelumbo nucifera Gaertn).Plos One,2013,8(6):e67116.
    [112]Shan J,Song W,Zhou J,Wang X,Xie C,Gao X,Xie T,Liu J.Transcriptome analysis reveals novel genes potentially involved in photoperiodic tuberization in potato.Genomics,2013,102(4):388-396.
    [113]Agrawal L,Chakraborty S,Jaiswal D K,Gupta S,Datta A,Chakraborty N.Comparative proteomics of tuber induction,development and maturation reveal the complexity of tuberization process in potato(Solanum tuberosum L.).Journal of Proteome Research,2008,7:3803-3817.
    [114]姜立娜.萝卜肉质根形成性状的分子生物学基础[D].南京:南京农业大学,2012.Jiang L N.Molecular characterization of taproot formation traits in radish(Raphanus sativus L.)[D].Nanjing:Nanjing Agricultural University,2012.(in Chinese)
    [115]Lee J,Jung J G,Jang G,Nieminen K,Elo A,Helariutta Y,Fei Z.Comparative genomics approach to understanding the crop root development.Plant and Animal Genome XXII.January 11-15,2014.San Diego,CA.
    [116]Xu X,Pan S,Cheng S,Zhang B,Mu D,Ni P,et al.Genome sequences and analysis of the tuber crop potato.Nature,2011,475:189-195.
    [117]Kitashiba H,Li F,Hirakawa H,Kawaanbe T,Zou Z,Hasegawa Y,Tonosaki K,Shirasawa S,Fukushima A,Yokoi S,Takahata Y,Kakizaki T,Ishida M,Okamoto S,Sakamoto K,Shirasawa K,Tabata S,Nishio T.Draft sequence of the radish(Raphanum sativus L.)genome.DNA Research,2014,21(5):481-490.
    [118]Moghe G D,Hufnagel D E,Tang H,Xiao Y,Dworkin I,Town C D,Conner J K,Shiu S.Consequences of whole-genome triplication as reveal by comparative genomic analyses of the wild radish Raphanus raphanistrum and three other Brassicaceae species.The Plant Cell,2014,26:1925-1937.
    [119]Ming R,Van Buren R,Liu Y,Yang M,Han Y,Li L T,Zhang Q,Kim M J,Schatz M C,Campbell M,Li J,Bowers J E,Tang H,Lyons E,Ferguson A A,Narzisi G,Nelson D R,Blaby-Haas C E,Gschwend A R,Jiao Y,Der J P,Zeng F,Han J,Min X J,Hudson K A,Singh R,Grennan A K,Karpowicz S J,Watling J R,Ito K,Robinson S A,Hudson M E,Yu Q,Mockler T C,Carroll A,Zheng Y,Sunkar R,Jia R,Chen N,Arro J,Wai C M,Wafula E,Spence A,Han Y,Xu L,Zhang J,Peery R,Haus M J,Xiong W,Walsh J A,Wu J,Wang M L,Zhu Y J,Paull R E,Britt A B,Du C,Downie S R,Schuler M A,Michael T P,Long S P,Ort D R,Schopf J W,Gang D R,Jiang N,Yandell M,deP amphilis C W,Merchant S S,Paterson A H,Buchanan B B,Li S,Shen-Miller J.Genome of the long-living sacred lotus(Nelumbo nucifera Gaertn.).Genome Biology,2013,14(5):R41.
    [120]Stich B.Comparison of mating designs for establishing nested association mapping populations in maize and Arabidopsis thaliana.Genetics,2009,183:1525-1534.
    [121]Meijon M,Satbhai S B,Tsuchimatsu T,Busch W.Genome-wide association study using cellular traits identifies a new regulator of root development in Arabidopsis.Nature genetics,2014,46(1):77-83.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700