热暴露对陶瓷隔热瓦表面硼硅玻璃涂层组织的影响
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Effect of Thermal Exposure on Microstructure of Borosilicate Glass Coating on Ceramic Insulation Tile
  • 作者:孙宇雷 ; 李明伟 ; 钟业盛 ; 史丽萍 ; 赫晓东
  • 英文作者:SUN Yu-lei;LI Ming-wei;ZHONG Ye-sheng;SHI Li-ping;HE Xiao-dong;National Key Lab for Precision Heat Processing of Metal, Harbin Institute of Technology;Center for Composite Materials and Structure, Harbin Institute of Technology;
  • 关键词:陶瓷隔热瓦 ; 硼硅玻璃涂层 ; 热暴露 ; 组织演变 ; 热氧化 ; 失效形式
  • 英文关键词:ceramic insulation tile;;borosilicate glass coating;;thermal exposure;;microstructure evolution;;thermal oxidation;;failure modes
  • 中文刊名:BMJS
  • 英文刊名:Surface Technology
  • 机构:哈尔滨工业大学金属精密热加工国家级重点实验室;哈尔滨工业大学复合材料与结构研究所;
  • 出版日期:2019-01-20
  • 出版单位:表面技术
  • 年:2019
  • 期:v.48
  • 基金:特种环境复合材料技术国家级重点实验室基金~~
  • 语种:中文;
  • 页:BMJS201901013
  • 页数:7
  • CN:01
  • ISSN:50-1083/TG
  • 分类号:96-102
摘要
目的研究大面积可重复使用刚性陶瓷瓦表面高辐射率硼硅玻璃涂层在服役温度条件下微观组织的演变情况。方法采用在1250℃和1300℃下热暴露的方法来模拟涂层服役温度环境,借此研究涂层微观组织高温下的演变规律。采用扫描电子显微镜(SEM)对热暴露前后涂层的微观形貌进行了表征,利用X射线衍射仪(XRD)表征了涂层热暴露前后的物相组成。结果 1250℃和1300℃热暴露之后,涂层表面出现微孔,尤其在辐射剂颗粒(MoSi2、Si B4)聚集区域,且微孔数量随热暴露次数的增加而增多。1300℃下热暴露5次后,中间过渡层发生烧结分层现象,靠近表面一侧逐渐变致密并与表面层烧结在一起,而另一侧则逐渐和基体烧结在一起。涂层热暴露后有方石英相析出,且析晶量与热暴露次数呈正相关关系。结论 1300℃下热暴露后,中间过渡层逐渐破坏,涂层由双层结构转变为单层结构,其抗热震性能下降,易产生裂纹、脱落等问题。高温热暴露析出方石英晶体将会影响涂层尺寸的稳定性。此外,高温热暴露导致涂层中辐射剂成分氧化,生成微孔,破坏涂层致密性,降低其抗冲刷能力,更易引起涂层脱落。
        The work aims to study the microstructure evolution of high emissivity borosilicate coating on large area reusable rigid insulation tile in the ascent temperature environment. Thermal exposure was carried out to simulate the temperature condition of reentry at 1250 ℃ and 1300 ℃, so as to investigate the evolution rules of coating microstructure at high temperature. Scanning Electron Microscopy(SEM) and X-Ray Diffraction(XRD were respectively used to characterize the microstructure and the phase of coating before and after thermal exposure. The coating surface generated micropores after thermal exposure at 1250 ℃ and 1300 ℃, especially in the zone of radiation agent particle(MoSi2 and SiB4) aggregation. The number of micropores increased with the number of thermal exposure. In addition, intermediate transition layer was re-sintered and stratified after 5 times of thermal exposure at 1300 ℃. The side near surface gradually became dense and was sintered together with the surface, while the other side was sintered with the substrate. Cristobalite phase precipitated on the coating after thermal exposure and the amount of crystallization was positively correlated with the number of thermal exposures. The intermediate transition layer is gradually destroyed and the structure of coating is also transformed from a two-layer to a single-layer after thermal exposure at 1300 ℃. The capability of thermal shock resistance decreases and the coating is easy to cause crack, peeling, etc. The cristobalite precipitated on the coating after thermal exposure will affect the size and stability of coating. The thermal exposure can cause oxidation of the radiation component and form micropores, which reduce the compactness of surface coating and lead to the peeling of coating.
引文
[1]许红英,侯丹,陈杰,等.美空军发射X-37B飞行器简析[J].中国航天,2010(6):21-25.XU Hong-ying,HOU Dan,CHEN Jie,et al.Brief analysis of X-37B launched by aircraft US air force[J].Erospace China,2010(6):21-25.
    [2]鲁芹,姜贵庆,罗晓光,等.X-37B空天飞行器轻质非烧蚀热防护新技术[J].现代防御技术,2012,40(1):26-30.LU Qin,JIANG Gui-qing,LUO Xiao-guang,et al.Lightweight and non-ablation new TPS for X-37B aerospace vehicle[J].Modern defence technology,2012,40(1):26-30.
    [3]李虹琳,陈杰.X-37B轻质低成本可重复使用防热系统简析[J].战术导弹技术,2013(4):13-16.LI Hong-lin,CHEN Jie.Analysis of X-37B lightweight low-cost reusable thermal protection system[J].Tactical missile technology,2013(4):13-16.
    [4]周志勇,马彬,张萃,等.X-37B轨道试验飞行器可重复使用热防护系统综述[J].航天器工程,2016,25(4):95-101.ZHOU Zhi-yong,MA Bin,ZHANG Cui,et al.Reusable thermal protection system for orbital test vehicle X-37B[J].Spacecraft engineering,2016,25(4):95-101.
    [5]武勇斌,赫晓东,李军.陶瓷隔热瓦表面Si O2-B2O3-Mo Si2-SiB4涂层的制备与性能研究[J].航天制造技术,2012(5):10-13.WU Yong-bin,HE Xiao-dong,LI Jun.Preparation and properties of SiO2-B2O3-Mo Si2-SiB4 coating for ceramic insulation tile[J].Aerospace manufacturing technology,2012(5):10-13.
    [6]鲁芹,胡龙飞,罗晓光,等.高超声速飞行器陶瓷复合材料与热结构技术研究进展[J].硅酸盐学报,2013,41(2):251-260.LU Qin,HU Long-fei,LUO Xiao-guang,et al.Development of ceramic composite and hot structure for hypersonic vehicle[J].Journal of the Chinese ceramic society,2013,41(2):251-260.
    [7]叶红,王志瑾.高超声速飞行器热防护结构参数优化及对比分析[J].航天器环境工程,2013,30(5):516-521.YE Hong,WANG Zhi-jin.The optimization and comparison of thermal protection structures for hypersonic aircraft[J].Spacecraft environment engineering,2013,30(5):516-521.
    [8]王康太,冯坚,姜勇刚,等.陶瓷纤维刚性隔热瓦研究进展[J].材料导报,2011,25(23):35-39.WANG Kang-tai,FENG Jian,JIANG Yong-gang,et al.Development of ceramic fiber rigid insulation tiles[J].Materials review,2011,25(23):35-39.
    [9]MILOS F S,SQUIRE T H.Thermostructural analysis of X-34 wing leading-edge tile thermal protection system[J].Journal of spacecraft&rockets,2015,36(36):189-198.
    [10]杨杰,隋学叶,刘瑞祥,等.航天飞机及高超飞行器用刚性隔热材料研究进展[J].现代技术陶瓷,2015,36(3):25-29.YANG Jie,SUI Xue-ye,LIU Rui-xiang,et al.The research development of rigid insulation materials for the space shuttle and hypersonic aircraft[J].Advanced ceramic,2015,36(3):25-29.
    [11]GOLDSTEIN H E,LEISER D B,KATVALA V W.Reaction cured glass and glass coatings:US,4093771[P].1978-10-05.
    [12]LEISER D B,SMITH M,CHURCHWARD R A,et al.Toughened uni-piece fibrous insulation:U.S.,5079082[P].1992-09-28.
    [13]杨胶溪,王志成,王欣,等.激光熔覆Mo Si2复合涂层组织演变与性能研究[J].中国激光,2013(12):58-64.YANG Jiao-xi,WANG Zhi-cheng,WANG Xin,et al.Microstructure and properties of laser cladding MoSi2 composite coating[J].Chinese journal of laser,2013(12):58-64.
    [14]徐常明,王士维,黄校先,等.方石英的析晶与无定形化[J].无机材料学报,2007,22(4):577-582.XU Chang-ming,WANG Shi-wei,HUANG Xiao-xian,et al.Crystallization and amorphization of cristobalite[J].Journal of inorganic materials,2007,22(4):577-582.
    [15]TAO X,XU X J,GUO L L,et al.MoSi2-borosilicate glass coating on fibrous ceramics prepared by in-situ reaction method for infrared radiation[J].Materials&design,2016,103:144-151.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700