纯铜滚动载流摩擦副在不同载荷和电压作用下的失效研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Failure of Cu Rolling Triboelectric Pairs under Various Load and Voltage
  • 作者:宋晨飞 ; 孙毓明 ; 张燕燕 ; 孙逸翔 ; 张永振
  • 英文作者:SONG Chenfei;SUN Yuming;ZHANG Yanyan;SUN Yixiang;ZHANG Yongzhen;National United Engineering Laboratory for Advanced Bearing Tribology,Henan University of Science and Technology;State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics,Chinese Academy of Sciences;Wuhan Research Institute of Materials Protection, China Academy of Machinery Science and Technology;
  • 关键词:滚动 ; 载流摩擦 ; 失效
  • 英文关键词:rolling;;tribology with current;;failure
  • 中文刊名:JXXB
  • 英文刊名:Journal of Mechanical Engineering
  • 机构:河南科技大学高端轴承摩擦学技术与应用国家地方联合工程实验室;中国科学院兰州化学物理研究所固体润滑国家重点实验室;机械科学研究总院武汉材料保护研究所;
  • 出版日期:2019-06-24 10:14
  • 出版单位:机械工程学报
  • 年:2019
  • 期:v.55
  • 基金:国家自然科学基金(51775173,51405134);; 中国博士后科学基金(2016M590676);; 固体润滑国家重点实验室开放课题(LSL-1509)资助项目
  • 语种:中文;
  • 页:JXXB201909008
  • 页数:8
  • CN:09
  • ISSN:11-2187/TH
  • 分类号:76-83
摘要
采用FTM-CF100载流摩擦试验机,以纯铜对滚配副为例研究了滚动载流摩擦副的失效行为和失效机制。随着测试时间的增加,摩擦因数首先保持平稳然后逐步上升,传导的电流在初期较快增加后保持稳定,在此过程中摩擦因数和电流的波动性增加。经过至少180 min运行后,保持电压不变时最终得到的摩擦因数和电流随载荷的增加而增加,且高载荷有利于获取较低的载流/摩擦波动性;保持载荷不变时高电压下摩擦因数更高而且波动性更大,均高于无电流情形。滚动载流摩擦副性能失效表现为摩擦因数的大幅上升以及电流波动性恶化,增加载荷和电压均加速失效过程。结合微观表征,推测在高压力和电阻热的作用下表面微凸峰易发生形变,造成载流摩擦表面粗糙度下降,因而真实接触面积增加从而电流上升;但此时铜材料易产生黏着,引起摩擦因数的升高;载流摩擦表面的局部氧化和氧化磨粒导致了载流/摩擦的波动性加剧。
        Rolling electric contact is a novel style of conducting rotary joint, whose failure behavior and the involved mechanism under triboelectric conditions are studied by FTM-CF100 tribometer. It is found that the friction coefficient keeps stable firstly and then grows up as rolling continued, at the same time, the current rises rapidly at initial then level off. And the friction coefficient and current lose their stability during the rolling. After rolling for at least 180 minutes, the final friction coefficient and current increases with the increasing of contact load under a constant voltage. Load increasing can improve the stability of triboelectric contact.Moreover, the friction coefficient and its fluctuation increase with the growth of voltage, which is always higher than those during mechanical rolling. The performance failure could be summarized as significant rising of friction coefficient and deterioration of current stability. The growth of load and voltage will accelerate failure process. Based on micro characterization, it is speculated that asperities on triboelectric pairs should be flatten more easily due to the mechanical stress and joule heating, resulting in lower roughness and larger contact area, and consequently leading to the rising of current. The friction coefficient increases because of the adhesion between the asperities. The deterioration of triboelectric contact stability could be mainly attributed to the local oxidation and oxides debris.
引文
[1]张永振,宋克兴,杜三明.北京:载流摩擦学[M].北京:科学出版社,2016.ZHANG Yongzhen,SONG Kexing,DU Sanming,et al.Current carrier tribology[M].Beijing:Science Press,2016
    [2]徐屹,凤仪,王松林,等.碳纳米管-银-石墨复合材料的电磨损性能[J].机械工程学报,2006,25(12):328-332.XU Yi,FENG Yi,WANG Songlin,et al.Electrcal friction and wear properties of CNT-Ag-G composite[J].Journal of Mechanical Engineering,2006,25(12):328-332.
    [3]GENERALOVA K,RYAPOSOV I,SHATSOV A.Tribological characteristics of low-voltage sliding electrical contacts of gold alloys[J].Journal of Friction&Wear,2016,37(5):482-488.
    [4]CHEN Guangxiong,YANG Hongjuan,ZHANG Weihai,et al.Experimental study on arc ablation occurring in a contact strip rubbing against a contact wire with electrical current[J].Tribology International,2013,61:88-94.
    [5]张亚东,韩璐,李明,等.高速列车受电弓气动噪声降噪[J].机械工程学报,2017,53(6):94-101.ZHANG Yadong,HAN Lu,LI Ming,et al.Reduction of aerodynamic noise of high-speed train pantograph[J].Journal of Mechanical Engineering,2017,53(6):94-101.
    [6]RENZ D.High voltage-high power components for large space power distribution systems[C]//19th Intersociety Energy Conversion Engineering Conference,19-24August 1984,San Francisco,California.Cleveland:NASA Lewis Research Center,1984:84N22615.
    [7]JACOBSON P.Rolling electrical transfer coupling improvements:United States,6582237[P].2003-06-24.
    [8]高春城.新型滚动电传输装置的设计和实验研究[D].哈尔滨:哈尔滨工业大学,1995.GAO Chuncheng.Design and experimental study of a new type of roll ring[D].Harbin:Harbin Institute of Technology,1995.
    [9]孙丽,王秀伦.滚环的优化设计[J].大连交通大学学报,1999,20(3):56-60.SUN Li,WANG Xiulun.Optimal design of roll ring[J].Journal of Dalian Jiaotong University,1999,20(3):56-60.
    [10]刘文科,郑传荣,赵克俊.滚动汇流环技术的发展和应用综述[J].火控雷达技术,2014(2):107-111.LIU Wenke,ZHENG Chuanrong,ZHAO Kejian.Overview on development and application of roll slip ring technology[J].Fire Control Radar Technology,2014(2):107-111.
    [11]刘自立,侯欣宾,王立,等.新型空间大功率滚环热分析[J].航天器工程,2017,26(4):52-59.LIU Zili,HOU Xinbin,WANG Li,et al.Thermal analysis of novel high-power roll-ring[J].Spacecraft Engineering,2017,26(4):52-59.
    [12]岳洋,孙逸翔,孙毓明,等.载荷和电压对纯铜滚动载流摩擦学性能的影响[J].摩擦学学报,2018,38(1):67-74.YUE Yang,SUN Yixiang,SUN Yuming,et al.Effect of load and voltage on the tribo-electric behaviour of rolling cu pairs[J].Tribology,2018,38(1):67-74.
    [13]汤锋,姜毅.某直升机载雷达汇流环的设计[J].电子机械工程,2010,(6):30-32.TANG Feng,JIANG Yi.A design of the helicopter borne radar slip-ring[J].Electro-Mechanical Engineering,2010,(6):30-32.
    [14]邢立华,卢锦明,李耀娥,等.空间用精密导电滑环的研制[J].导航与控制,2015,(1):59-64.XING Lihua,LU Jinming,LI Yaoe,et al.Research on the precision conductive slip ring in space[J].Navigatlon and Control,2015,(1):59-64.
    [15]ZHANG Yongzhen,YANG Zhenghai,SONG Kexing,et al.Triboelectric behaviors of materials under high speeds and large currents[J].Friction,2013,1(3):259-270.
    [16]BANSAL D,STREATOR J.Voltage saturation in electrical contacts via viscoplastic creep[J].Acta Materialia,2011,59(2):726-737.
    [17]陈奇,黄守武,张振,等.考虑摩擦因素的两圆柱体表面接触承载能力的分形模型研究[J].机械工程学报,2016,52(7):114-121.CHEN Qi,HUANG Shouwu,ZHANG Zhen,et al.Research on fractal contact model for contact carrying capacity of two cylinders’surfaces considering friction factors[J].Journal of Mechanical Engineering,2016,52(7):114-121.
    [18]张晓寒,ROBERT L J,孟文俊.多尺度粗糙度对接触面真实接触面积的影响[J].润滑与密封,2015,(6):76-80.ZHANG Xiaohan,ROBERT L J,MENG Wenjun.The influence of multiscale roughness on the real contact area between surfaces[J].Lubrication Engineering,2015(6):76-80.
    [19]ROD C.Effects of surface roughness on rolling friction[J].European Journal of Physics,2015,36(6):065029.
    [20]SHERRINGTON I,HAYHURST P.Simultaneous observation of the evolution of debris density and friction coefficient in dry sliding steel contacts[J].Wear,2001,249(3):182-187.
    [21]TUNNA J,SINCLAIR J,PEREZ J.A Review of wheel wear and rolling contact fatigue[J].Proceedings of the Institution of Mechanical Engineers,Part F:Journal of Rail and Rapid Transit,2007,221(2):271-289.
    [22]GAARD A,HALLBACK N,KRAKHMALEV P,et al.Temperature effects on adhesive wear in dry sliding contacts[J].Wear,2010,268(7):968-975.
    [23]LIU Qinggang,KUANG Dengfeng,ZHANG Shilin,et al.Analysis of AFM tip-induced oxidation of thin metal film in the air[C]//Optical Science and Technology,SPIE's 48th Annual Meetin,15 October 2003,San Diego,California.Bellingham:SPIE,2003:8.
    [24]ALONSO-GONZALEZ P,ALEN B,FUSTER D,et al.Formation and optical characterization of single InAs quantum dots grown on Ga As nanoholes[J].Applied Physics Letters,2007,91(16):163104-163104-163103.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700