液态法制备复合材料的多组分伪势LBM模拟
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Simulation of Liquid Infiltration Process for Reparation of Composite Materials by Multi-Component Pseudopotential LBM
  • 作者:李培生 ; 王昭太 ; 赵万东 ; 钟源 ; 张莹
  • 英文作者:LI Peisheng;WANG Zhaotai;ZHAO Wandong;ZHONG Yuan;ZHANG Ying;School of Mechanical and Electrical Engineering,Nanchang University;
  • 关键词:金属基复合材料 ; 多组分伪势模型 ; 多孔介质 ; 浸渗饱和度 ; 浸渗时间 ; 分形结构
  • 英文关键词:metal matrix composites;;multi-component pseudopotential model;;porous media;;infiltration saturation;;infiltration time;;fractal structure
  • 中文刊名:HNLG
  • 英文刊名:Journal of South China University of Technology(Natural Science Edition)
  • 机构:南昌大学机电工程学院;
  • 出版日期:2018-07-15
  • 出版单位:华南理工大学学报(自然科学版)
  • 年:2018
  • 期:v.46;No.382
  • 基金:国家自然科学基金资助项目(51566012,11562011);; 南昌大学研究生创新专项基金资助项目(CX2017061)~~
  • 语种:中文;
  • 页:HNLG201807003
  • 页数:9
  • CN:07
  • ISSN:44-1251/T
  • 分类号:13-21
摘要
采用修正的多组分伪势模型(EFM)模拟了液态法制备金属基复合材料过程中多孔介质内的浸渗过程,研究了黏度比(M)、壁面润湿性、雷诺数(Re)、孔隙率以及不同分形结构对浸渗过程的影响.结果表明:黏度比越大,浸渗饱和度(S)越低、浸渗时间(t)越短,并且M>90时,黏度比对饱和度和浸渗时间影响可忽略不计,此时接触角的影响较小; Re越小,浸渗饱和度越高、浸渗时间越长,同时壁面润湿性的影响越大;当入口Re一定时,孔隙率越小,分形多孔的渗透率越低,由于孔隙分布不均,造成流体在局部优先浸渗,导致浸渗时间减少、饱和度降低;对不同的分形多孔介质,壁面润湿性的影响有着明显的差异,对A类(标准分形)和C类(固体骨架偏右)的多孔介质,接触角(θ)越大,饱和度越低、浸渗时间越短;对B(固体骨架偏上)和D类(固体骨架偏左上)分形多孔,随接触角的增大,饱和度和浸渗时间均呈现先增加后减小的趋势,并且在接触角小于90°的区间内出现极值.
        In this paper,the infiltration process of liquid preparation of composite materials has been simulated in porous media by a modified multi-component pseudopotential model( EFM). A study has been conducted of the effects of viscosity ratio( M),wall wettability,Reynolds number( Re),porosity and different fractal structures on the infiltration process. It is shown that the larger the viscosity ratio is,the smaller the infiltration saturation( S)and infiltration time( t) will be; meanwhile the effect of viscosity ratio on infiltration saturation and time is negligible when M > 90. At this time the influence of contact angle is very small; the smaller the Re is,the greater the infiltration saturation and infiltration time are,and the greater the effect of wall wettability will be. When the Re of inlet is consistent,the smaller the porosity is,the lower the permeability of the fractal porous will be. Due to the uneven pore distribution,the fluid preferentially infiltrates in local area,leading to the decrease of the infiltration time and the saturation. For different fractal porous media,the influence of wall wettability is obviously different.For Type A( standard fractal) and Type C( right deviation of solid matrix) porous media,the larger the contact angle( θ) is,the saturation and the infiltration time is smaller. The fractal porosity of type B( upward deviation of solid matrix) and D( left deviation of solid matrix) fractal porous,the larger the contact angle is,the saturation and the infiltration time tend to increase firstly and decrease lately,and the extreme value appears in the contact angle which is less than 90°.
引文
[1] TANG T,HORSTEMEYER M F,Wang P. Micromechanical analysis of thermoelastoplastic behavior of metal matrix composites[J]. International Journal of Engineering Science,2012,51(2):161-167.
    [2]李海舟,卢德宏,蒋业华.液态法制备金属基复合材料浸渗动力学模型的研究进展[J].材料导报,2016,30(11):77-82.LI Hai-zhou,LU De-hong,JIANG Ye-hua. Modeling the kinetics during liquid infiltration process for the preparation of metal matrix composites[J]. Materials Review,2016,30(11):77-82.
    [3]夏振海,毛志英,周尧和.液态金属浸渗动力学模型及其应用[J].金属学报,1991,27(6):143-149.XIA Zhen-hai,MAO Zhi-ying,ZHOU Yao-he. Model for infiltration kinetics of liquid metal and its application[J]. Acta Metallurgica Sinica,1991,27(6):143-149.
    [4] XIA Z,ZHOU Y,MAO Z,et al. Fabrication of fiber-reinforced metal matrix composites by variable pressure infiltration[J]. Metall Ftan B,1992,2312(6):295.
    [5] WASHBURN E W. The dynamics of capillary flow[J].Physical Review(Series I),1921,17(3):273-283.
    [6] MUSCAT D,HARRIS R L,DREW R A L. The effect of pore size on the infiltration kinetics of aluminum in titanium carbide preforms[J]. Acta Metallurgica Et Materialia,1994,42(12):4155-4163.
    [7] DULLIEN FA L. Porous media:fluid transport and pore structure[M]. New York:Academic Press,1992.
    [8]黄金,柯秀芳.熔融自发浸渗制备多孔陶瓷复合相变储能材料[J].材料科学与工程学报,2007,25(3):336.HUANG Jin,KE Xiu-fang. Molten salts/porous-ceramic matrix composites by spontaneousmelt infiltration method as phase-change energy storage materials[J]. Journal of Materials Science and Engineering,2007,25(3):336.
    [9]秦振凯.无压浸渗制备双尺寸颗粒Si Cp/Al电子封装材料的研究[D].西安:西北工业大学,2005.
    [10] PURCELL W R. Interpretation of capillary pressure data[J]. Journal of Petroleum Technology,1950,2(8):11-12.
    [11] TRUMBLE K P. Spontaneous infiltration of non-cylindrical porosity:close-packed spheres[J]. Acta Materialia,1998,46(46):2363-2367.
    [12]曾令可,胡动力,税安泽.多孔陶瓷制备新工艺及其进展[J].中国陶瓷,2007,44(4):7-11.ZENG Ling-ke,HU Dong-li,SHUI An-ze. The novel techniques and development of preparation of porous ceramics[J]. China Ceramics,2007,44(4):7-11.
    [13] CHEN L,KANG Q,MU Y,et al. A critical review of the pseudopotential multiphase lattice Boltzmann model:methods and applications[J]. International Journal of Heat and Mass Transfer,2014,76(6):210-236.
    [14] MAIERR S,KROLL D M,BERNARD R S,et al. Porescale simulation of dispersion[J]. Physics of Fluids,2000,12(8):2065-2079.
    [15] MADADI M,SAHIMI M. Lattice Boltzmann simulation of fluid flow in fracture networks with rough,self-affine surfaces[J]. Physical Review E Statistical Nonlinear and Soft Matter Physics,2003,67(22):026309.
    [16] WANG M,WANG J,PAN N. Mesoscopic predictions of the effective thermal conductivity for microscale random porous media[J]. Physical Review E:Statistical Nonlinear and Soft Matter Physics,2007,75(32):036702.
    [17] SHAN X,CHEN H. Lattice Boltzmann model for simulating flows with multiple phases and components[J].Physical Review E,1993,47(3):1815-1819.
    [18] SHAN X,CHEN H. Simulation of nonideal gases and liquid-gas phase transitions by the lattice Boltzmann equation[J]. Physical Review E,1994,49(4):2941-2948.
    [19] PORTER M L,COON E T,KANG Q. Multicomponentinterparticle-potential lattice Boltzmann model for fluids with large viscosity ratios[J]. Physical Review E Statistical Nonlinear and Soft Matter Physics,2012,86(32):036701.
    [20] CHEN L,KANG Q,TANG Q. Pore-scale simulation of multicomponent multiphase reactive transport with dissolution and precipitation[J]. International Journal of Heat and Mass Transfer,2015,85:935-949.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700