旋梯式螺旋折流板换热器预热水煤浆的流动与换热性能?
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Flow and heat transfer performance of shell-and-tube heat exchangers with ladder-type fold baffles for preheating coal water slurry
  • 作者:王斯民 ; 叶树沛 ; 肖娟 ; 宋晨 ; 张早校 ; 文键
  • 英文作者:WANG Si-min;YE Shu-pei;XIAO Juan;SONG Chen;ZHANG Zao-xiao;WEN Jian;School of Chemical Engineering and Technology, Xi'an Jiaotong University;School of Energy and Power Engineering, Xi'an Jiaotong University;
  • 关键词:水煤浆预热 ; 管壳式换热器 ; 旋梯式螺旋折流板 ; 流动 ; 传热 ; 工况选择
  • 英文关键词:coal water slurry preheating;;shell-and-tube heat exchangers;;ladder-type fold baffles;;flow;;heat transfer;;working conditions selection
  • 中文刊名:GXHX
  • 英文刊名:Journal of Chemical Engineering of Chinese Universities
  • 机构:西安交通大学化学工程与技术学院;西安交通大学能源与动力学院;
  • 出版日期:2019-04-15
  • 出版单位:高校化学工程学报
  • 年:2019
  • 期:v.33
  • 基金:国家自然科学基金(51676146);; 中央高校基本科研业务费专项资金(xjj2018202)
  • 语种:中文;
  • 页:GXHX201902006
  • 页数:10
  • CN:02
  • ISSN:33-1141/TQ
  • 分类号:52-61
摘要
对进入气化炉前的水煤浆预热可以提高气化效率和降低氧耗。提出采用旋梯式螺旋折流板换热器预热水煤浆,水煤浆在换热器壳侧流动,导热油作为热流体在管侧流动。基于实验,研究了在换热器壳侧预热水煤浆的可行性、导热油定性温度和水煤浆流量对流动换热性能的影响,得到了壳侧传热和阻力系数关联式。实验结果表明,水煤浆在换热器壳侧流动换热是完全可行的;提高导热油定性温度可以提高水煤浆温升和总传热系数,同时降低壳侧压降;提高水煤浆流量可以提高总传热系数,但是壳侧压降增大。研究结果为开展水煤浆预热设备的研究提供了基础,对水煤浆预热的工况选择具有重要意义。
        Preheat of coal water slurry(CWS) before it entering gasifier can improve gasification efficiency and reduce oxygen consumption. Shell-and-tube heat exchangers with ladder-type fold baffles were proposed to preheat CWS which flows through the shell side, while conductive oil flows through the tube side as the hot fluid. Based on the experimental study, the feasibility of preheating CWS in the shell side of heat exchangers,and effects of conductive oil reference temperature and CWS flow rate on flow and heat transfer performance were studied. Empirical correlations of Nu_s and f_s were obtained. The experimental results show that it is completely feasible to preheat CWS in the shell side of heat exchangers. Increasing the conductive oil reference temperature can increase the temperature difference of CWS and the overall heat transfer coefficient, while the shell side pressure drop is decreased. Increasing the CWS flow rate can increase the overall heat transfer coefficient, but higher shell side pressure drop is obtained. The research results provide guidelines for further study of CWS preheating equipment and are beneficial for working condition selection of CWS preheating.
引文
[1]MUSA S D,TANG Z,IBRAHIM A O,et al.China's energy status:A critical look at fossils and renewable options[J].Renewable&Sustainable Energy Reviews,2017,81(2):2281-2290.
    [2]ZHANG X,WINCHESTER N,ZHANG X.The future of coal in China[J].Energy Policy,2017,110(11):644-652.
    [3]PENG B H,GUO D N,QIAO H,et al.Bibliometric and visualized analysis of China's coal research 2000-2015[J].Journal of Cleaner Production,2018,197(1):1177-1189.
    [4]CHANG S,ZHUO J,MENG S,et al.Clean coal technologies in China:current status and future perspectives[J].Engineering,2016,2(4):447-459.
    [5]CHEN W,XU R.Clean coal technology development in China[J].Energy Policy,2010,38(5):2123-2130.
    [6]孙漾,顾幸生.水煤浆气化装置操作优化技术及其应用[J].化工学报,2012,63(9):2799-2804.SUN Y,GU X S.Coal water slurry gasification unit operation optimization technology and its application[J].CIESC Journal,2012,63(9):2799-2804.
    [7]黄桃花,王亦飞,焦延涛,等.高效能两段组合式煤气化过程热态试验[J].化工学报,2010,61(11):2924-2930.HUANG T H,WANG Y F,JIAO Y T,et al.Hot-state experiment of high-performance two stage combined coal gasification[J].CIESC Journal,2010,61(11):2924-2930.
    [8]夏德宏,唐献红,王世均.水煤浆预热对燃烧的影响[J].冶金能源,1992,11(5):30-31.XIA D H,TANG X H,WANG S J.Influence of preheating on CWS combustion[J].Energy for Metallurgical Industry,1992,11(5):30-31.
    [9]KATAYAMA Y,TAMAURA Y.Development of new green-fuel production technology by combination of fossil fuel and renewable energy[J].Energy,2005,30(11):2179-2185.
    [10]NOVACK M,ROFFE G,MILLER G.Combustion of coal/water mixtures with thermal preconditioning[J].Journal of Engineering for Gas Turbines and Power,1987,109(3):313-318.
    [11]AIUCHI K,MORIYAMA R,TAKEDA S,et al.A pre-heating vaporization technology of coal-water-slurry for the gasification process[J].Fuel Processing Technology,2007,88(4):325-331.
    [12]WANG Q,ZENG M,MA T,et al.Recent development and application of several high-efficiency surface heat exchangers for energy conversion and utilization[J].Applied Energy,2014,135(12):748-777.
    [13]王斯民,肖娟,王家瑞,等.基于流固耦合理论的螺旋折流板换热器结构优化研究[J].高校化学工程学报,2017,31(3):539-546.WANG S M,XIAO J,WANG J R,et al.Structural optimization of shell-tube heat exchanger with helical baffles based on fluid-structure interaction[J].Journal of Chemical Engineering of Chinese Universities,2017,31(3):539-546.
    [14]WEN J,YANG H Z,WANG S M,et al.Experimental investigation on performance comparison for shell-and-tube heat exchangers with different baffles[J].International Journal of Heat&Mass Transfer,2015,84(5):990-997.
    [15]SALAHUDDIN U,BILAL M,EJAZ H.A review of the advancements made in helical baffles used in shell and tube heat exchangers[J].International Communications in Heat&Mass Transfer,2015,67(10):104-108.
    [16]文键,杨辉著,王斯民,等.旋梯式螺旋折流板换热器优化结构的数值模拟[J].西安交通大学学报,2014,48(11):8-14.WEN J,YANG H Z,WANG S M,et al.Numerical simulation for configuration optimization of heat exchanger with helical baffles[J].Journal of Xi'an Jiaotong University,2014,48(11):8-14.
    [17]文键,杨辉著,薛玉兰,等.旋梯式螺旋折流板换热器换热性能的实验研究[J].高校化学工程学报,2015,29(4):795-801.WEN J,YANG H Z,XUE Y L,et al.Experimental investigation on heat transfer performance of heat exchanger with ladder-type fold baffles[J].Journal of Chemical Engineering of Chinese Universities,2015,29(4):795-801.
    [18]孟令杰,孔珑,章名耀.水煤浆管内流动的相似准数及其阻力特性[J].化工学报,1995,46(3):298-303.MENG L J,KONG L,ZHANG M Y.Similitude criterion and resistence characteristics of coal-water-slurry flowing in pipe[J].Journal of Chemical Industry and Engineering(China),1995,46(3):298-303.
    [19]CHEN L Y,DUAN Y F,PU W H,et al.CFD simulation of coal-water slurry flowing in horizontal pipelines[J].Korean Journal of Chemical Engineering,2009,26(4):1144-1154.
    [20]陈良勇,段钰锋,刘猛,等.水平管入口段内水煤浆流动特性数值模拟[J].东南大学学报,2010,40(2):402-408.CHEN L Y,DUAN Y F,LIU M,et al.Numerical study of developing coal-water slurry flow in entrance region of horizontal pipe[J].Journal of Southeast University,2010,40(2):402-408.
    [21]任远,陈良勇,赵国华,等.水煤浆流经渐缩管段的局部阻力特性[J].动力工程学报,2008,28(4):651-656.REN Y,CHEN L Y,ZHAO G H,et al.Study on local energy losses of coal water slurry flowing in gradual shrinking tubes[J].Chinese Journal of Power Engineering,2008,28(4):651-656.
    [22]史美中,王中铮.热交换器原理与设计[M].南京:东南大学出版社,2014.SHI M Z,WANG Z Z.Principle and design of heat exchangers[M].Nanjing:Southeast University Press,2014.
    [23]钱颂文.换热器设计手册[M].北京:化学工业出版社,2002.QIAN S W.Heat exchanger design manual[M].Beijing:Chemical Industry Press,2002.
    [24]MARADIYA C,VADHER J,AGARWAL R.The Heat transfer enhancement techniques and their thermal performance factor[J].Beni-Suef University Journal of Basic and Applied Sciences 2017,7(1):1-21.
    [25]林文珠,曹嘉豪,方晓明,等.管壳式换热器强化传热研究进展[J].化工进展,2018,37(4):1276-1286.LIN W Z,CAO J H,FANG X M,et al.Research progress of heat transfer enhancement of shell-and-tube heat exchanger[J].Chemical Industry and Engineering Progress,2018,37(4):1276-1286.
    [26]王振华,邢芳.流体在换热器管程侧或壳程侧的选择[J].广州化工,2018,46(7):108-110.WANG Z H,XING F.Allocation of stream in shell side or tube side[J].Guangzhou Chemical Industry,2018,46(7):108-110.
    [27]WEN J,GU X,WANG M,et al.Numerical investigation on the multi-objective optimization of a shell-and-tube heat exchanger with helical baffles[J].International Communications in Heat and Mass Transfer,2017,89(12):91-97.
    [28]YOU Y,FAN A,HUANG S,et al.Numerical modeling and experimental validation of heat transfer and flow resistance on the shell side of a shell-and-tube heat exchanger with flower baffles[J].International Journal of Heat&Mass Transfer,2012,55(25-26):7561-7569.
    [29]WANG X,ZHENG N,LIU P,et al.Numerical investigation of shell side performance of a double shell side rod baffle heat exchanger[J].International Journal of Heat&Mass Transfer,2017,108(3):2029-2039.
    [30]杨世铭,陶文铨.传热学[M].第4版.北京:高等教育出版社,2006.YANG S M,TAO W Q.Heat transfer[M].4th ed.Beijing:Higher Education Press,2006.
    [31]谢东.水煤浆流变特性及其检测技术研究[D].武汉:华中科技大学,2010.XIE D.Research on rheological characteristics of coal water slurry and its measurement technologies[D].Wuhan:Huazhong University of Science and Technology,2010.
    [32]MOFFAT R J.Describing the uncertainties in experimental results[J].Experimental Thermal&Fluid Science,1988,1(1):3-17.
    [33]AKBARI A,KOURAVAND S,CHEGINI G.Experimental analysis of a rotary heat exchanger for waste heat recovery from the exhaust gas of dryer[J].Applied Thermal Engineering,2018,138(6):668-674.
    [34]ROH N S,SHIN D H,KIM D C,et al.Rheological behaviour of coal-water mixtures.2.Effect of surfactants and temperature[J].Fuel,1995,74(9):1313-1318.
    [35]CHURCHILL S W,BERNSTEIN M A.A correlating equation for forced convection from gases and liquids to circular cylinder in cross flow[J].Journal of Heat Transfer,1977,99(2):300-306.
    [36]CENGEL Y A.Heat transfer:approach[M].New York:McGraw-Hill,2007.
    [37]ZHANG J F,LI B,HUANG W J,et al.Experimental performance comparison of shell-side heat transfer for shell-and-tube heat exchangers with middle-overlapped helical baffles and segmental baffles[J].Chemical Engineering Science,2009,64(8):1643-1653.
    [38]ZHENG L,FURINSKY E.Comparison of shell,texaco,BGL and KRW gasifiers as part of IGCC plant computer simulations[J].Energy Conversion&Management,2005,46(11):1767-1779.
    [39]刘文,尹晓晖,李克海.水煤浆气化制氢的气化压力选择[J].洁净煤技术,2016,22(5):89-94.LIU W,YIN X H,LI K H.Pressure selection of coal to hydrogen by coal water slurry gasification technology[J].Clean Coal Technology,2016,22(5):89-94.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700