基于咔唑和3,3′-二甲基二苯醚共聚物主链的红光热活化延迟荧光聚合物的合成与表征
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Synthesis and Characterization of Red-emitting Thermally Activated Delayed Fluorescent Polymers Based on Poly (2,7-carbazole-co-3,3′-dimethyldiphenyl ether) as the Main Chain
  • 作者:杨云 ; 赵磊 ; 王淑萌 ; 丁军桥 ; 王利祥
  • 英文作者:Yun Yang;Lei Zhao;Shu-meng Wang;Jun-qiao Ding;Li-xiang Wang;State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry,Chinese Academy of Sciences;School of Applied Chemistry and Engineering,University of Science and Technology of China;
  • 关键词:咔唑 ; 3 ; 3'-二甲基二苯醚 ; 热活化延迟荧光 ; 聚合物 ; 红光
  • 英文关键词:Carbazole;;3,3′-Dimethyldiphenyl ether;;Thermal activated delayed fluorescence;;Polymers;;Red emission
  • 中文刊名:GFXB
  • 英文刊名:Acta Polymerica Sinica
  • 机构:中国科学院长春应用化学研究所高分子物理与化学国家重点实验室;中国科学技术大学应用化学与工程学院;
  • 出版日期:2019-03-07 09:26
  • 出版单位:高分子学报
  • 年:2019
  • 期:v.50
  • 基金:国家重点研发计划(项目号2016YFB0401301);; 国家重点基础研究发展计划(973计划,项目号2015CB655001);; 国家自然科学基金(基金号51873205,5157318)资助项目
  • 语种:中文;
  • 页:GFXB201907003
  • 页数:10
  • CN:07
  • ISSN:11-1857/O6
  • 分类号:41-50
摘要
采用咔唑和3,3'-二甲基二苯醚共聚物作为主链,通过Suzuki聚合方法,设计合成了系列红光热活化延迟荧光(TADF)聚合物PCzDMPE-R03~PCzDMPE-R10.和基于芴和3,3'-二甲基二苯醚共聚物主链的红光TADF聚合物相比,芴到咔唑的改变,能够有效地增加主链的最高占据分子轨道(HOMO)能级,进而降低空穴注入势垒.因此,PCzDMPE-R07获得了最优的非掺杂器件性能,启亮电压从原来的9.8 V降低到5.2 V,最大电流效率和外量子效率分别为3.35 cd/A和2.03%.在此基础上,将其分散在mCP中制备了掺杂器件,电流效率和外量子效率进一步提升到7.36 cd/A和3.77%.
        A series of red-emitting thermally activated delayed fluorescence(TADF) polymers based on poly(2,7-carbazole-co-3,3′-dimethyldiphenyl ether)(PCzDMPE) main chains, including PCzDMPE-R03,PCzDMPE-R05, PCzDMPE-R07, and PCzDMPE-R10, have been designed and synthesized via Suzuki polycondensation. The thermally stable polymers possessed glass transition temperatures above 90 °C and decomposition temperatures above 410 °C, which is beneficial to the devices of long-term services. As the content of red TADF unit increased, the maximum emission was gradually red-shifted from 577 nm(PCzDMPE-R03) to584 nm(PCzDMPE-R010), while the film photoluminescence quantum yield(PLQY) dropped correspondingly from 0.47 to 0.21 according to the energy gap law. Meanwhile, they all exhibited an obviously delayed fluorescence with the lifetime of 145 – 161 μs, accompanied by a prompt fluorescence of 4.5 – 6.5 ns. For instance, the temperature-dependent transient photoluminescence spectra measured for PCzDMPE-R07 sample displayed an enhanced delayed fluorescence upon the temperature rise from 150 K to 300 K, indicative of its TADF nature. More importantly, compared with earlier reports of red TADF polymers based on poly(fluorene-co-3,3′-dimethyl diphenyl ether), fluorene being replaced by carbazole in the present work could increase the highest occupied molecular orbital(HOMO) level and thus favor the hole injection. As a consequence, the turn-on voltage of PCzDMPE-R07 nondoped device was significantly reduced from 9.8 V to 5.2 V. PCzDMPE-R07 also outperformed the other candidates in terms of a maximum current efficiency of 3.35 cd/A and a maximum external quantum efficiency(EQE) of 2.03%. For performance optimization, a doped device was then fabricated by dispersing 20 wt% of PCzDMPE-R07 into the 1,3-bis(9 H-carbazol-9-yl)benzene(mCP) matrix as an emitting layer. The corresponding current efficiency and EQE were further improved to 7.36 cd/A and 3.77%, respectively.To sum up, the copolymer containing carbazole and 3,3′-dimethyldiphenyl ether provides a favorable backbone framework for the design and synthesis of TADF polymers that possesses high efficiency and low driving voltage simultaneously.
引文
1Uoyama H,Goushi K,Shizu K,Nomura H,Adachi C.Nature,2012,492:234-238
    2 Lin T A,Chatterjee T,Tsai W L,Lee W K,Wu M J,Jiao M,Pan K C,Yi C L,Chung C L,Wong K T,Wu C C.Adv Mater,2016,28:6976-6983
    3 Kaji H,Suzuki H,Fukushima T,Shizu K,Suzuki K,Kubo S,Komino T,Oiwa H,Suzuki F,Wakamiya A,Murata Y,Adachi C.Nat Commun,2015,6:8476
    4 Zeng W X,Lai H Y,Lee W K,Jiao M,Shiu Y J,Zhong C,Gong S L,Zhou T,Xie G H,Sarma M,Wong K T,Wu C C,Yang C L.Adv Mater,2018,30:1704961
    5 Nikolaenko A E,Cass M,Bourcet F,Mohamad D,Roberts M.Adv Mater,2015,27:7236-7240
    6 Lee S Y,Yasuda T,Komiyama H,Lee J,Adachi C.Adv Mater,2016,28:4019-4024
    7 Shao S Y,Hu J,Wan g X D,Wang L X,Jing X B,Wang F S.J Am Chem Soc,2017,139:17739-17742
    8 Xie G H,Luo J J,Huang M L,Chen T H,Wu K L,Gong S L,Yang C L.Adv Mater,2017,29:1604223
    9 Shao Shiyang(邵世洋),Ding Junqiao(丁军桥),Wang Lixiang(王利祥).Acta Polymerica Sinica(高分子学报),2018,(2):198-216
    10 Shao S Y,Ding J Q,Ye T L,Xie Z Y,Wang LX,Jing X B,Wang F S.Adv Mater,2011,23:3570-3574
    11 Wang Y J,Zhu Y H,Xie G H,Zhan H M,Yang C L,Cheng Y X.J Mater Chem C,2017,5:10715-10720
    12 Ren Z J,Nobuyasu R S,Dias F B,Monkman A P,Yan S K,Bryce M R.Macromolecules,2016,49:5452-5460
    13 Zeng X,Luo J J,Zhou T,Chen T H,Zhou X,Wu K L,Zou Y,Xie G H,Shao L G,Yang C L.Macromolecules,2018,51:1598-1604
    14 Yang Y,Zhao L,Wang S M,Ding J Q,Wang L X.Macromolecules,2018,51:9933-9942
    15 Dijken A V,Bastiaansen J J A M,Kiggen N M M,Langeveld B M W,Rothe C,Monkman A,Bach I,St?ssel P,Brunner K.J Am Chem Soc,2004,126:7718-7727
    16 Garbay G,Muccioli L,Hanifa A,Hadziioannou G,Brochon C,Cloutet E.Polymer,2017,119:274-284
    17 Zhang Q S,Kuwabara H,Potscavage W J Jr,Huang S,Hatae Y,Shibata T,Adachi C.J Am Chem Soc,2014,136:18070-18081
    18 Caspar Jonathan V,Kober E M,Sullivan B P,Meyer T J.J Am Chem Soc,1982,104:632-634
    19 Tao Y,Yuan K,Chen T,Xu P,Li H H,Chen R F,Zheng C,Zhang L,Huang W.Adv Mater,2014,26:7931-7958
    20 Li J,Nakagawa T,MacDonald J,Zhang Q,Nomura H,Miyazaki H,Adachi C.Adv Mater,2013,25:3319-3323

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700