尼龙-6单体己内酰胺绿色生产技术
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Green Production Technology of the Monomer of Nylon-6: Caprolactam
  • 作者:宗保宁 ; 孙斌 ; 程时标 ; 慕旭宏 ; 杨克勇 ; 赵俊琦 ; 张晓昕 ; 吴巍
  • 英文作者:Baoning Zong;Bin Sun;Shibiao Cheng;Xuhong Mu;Keyong Yang;Junqi Zhao;Xiaoxin Zhang;Wei Wu;Research Institute of Petroleum Processing, China Petrochemical Corporation;
  • 关键词:绿色化学 ; 绿色化工 ; 己内酰胺 ; 生产技术
  • 英文关键词:Green chemistry;;Green engineering;;Caprolactam;;Production technology
  • 中文刊名:GOCH
  • 英文刊名:工程(英文版)
  • 机构:Research Institute of Petroleum Processing, China Petrochemical Corporation;
  • 出版日期:2017-06-15
  • 出版单位:Engineering
  • 年:2017
  • 期:v.3
  • 基金:国家重点基础研究发展规划项目(2012CB224806)的资助~~
  • 语种:中文;
  • 页:GOCH201703015
  • 页数:12
  • CN:03
  • ISSN:10-1244/N
  • 分类号:215-226
摘要
中国石化石油化工科学研究院(RIPP)历经20年的努力,成功开发出尼龙-6单体己内酰胺绿色生产技术。该项技术主要包括:钛硅分子筛与浆态床反应器集成用于环己酮氨肟化合成环己酮肟,纯硅分子筛与移动床反应器集成用于环己酮肟气相贝克曼重排,非晶态Ni催化剂与磁稳定床反应器集成用于己内酰胺精制。己内酰胺绿色生产技术在国际上率先实现工业化应用,建成了200 kt·a~(-1)的工业装置。与已有技术相比,工业装置投资明显减少,氮原子利用率大幅提升,"三废"排放显著下降,没有副产硫酸铵。因此,已内酰胺与苯之间的价格差逐步减小。2015年,己内酰胺绿色生产技术的产能达到3×10~6 kt·a~(-1),使我国成为世界第一己内酰胺生产大国,全球市场份额超过50%。
        After two decades' endeavor, the Research Institute of Petroleum Processing(RIPP) has successfully developed a green caprolactam(CPL) production technology. This technology is based on the integration of titanium silicate(TS)-1 zeolite with the slurry-bed reactor for the ammoximation of cyclohexanone, the integration of silicalite-1 zeolite with the moving-bed reactor for the gas-phase rearrangement of cyclohexanone oxime, and the integration of an amorphous nickel(Ni) catalyst with the magnetically stabilized bed reactor for the purification of caprolactam. The world's first industrial plant based on this green CPL production technology has been built and possesses a capacity of 200 kt·a~(-1). Compared with existing technologies, the plant investment is pronouncedly reduced, and the nitrogen(N) atom utilization is drastically improved. The waste emission is reduced significantly; for example, no ammonium sulfate byproduct is produced. As a result, the price difference between CPL and benzene drops. In 2015, the capacity of the green CPL production technology reached 3 × 10~6 t·a~(-1), making China the world's largest CPL producer, with a global market share exceeding 50%.
引文
[1]IHS chemical Week,nylon engineering resins.[cited 2016 Jan].Available from:http://chemweek.com.
    [2]Lin M,Shu X,Wang X,Zhu B,inventors;China Petrochemical Corporation,Research Institute of Petroleum Processing,Sinopec,assignees.Titanium-silicalite molecular sieve and the method for its preparation.United States patent US6475465.2002 Nov 5.
    [3]Sun B,Wu W,Wang E,Li Y,Zhang S,Hu L inventors;China Petroleum&Chemical Corporation,Research Institute of Petroleum Processing,Sinopec,assignees.Process for regenerating titanium-containing catalysts.United States patent US7384882.2008 Jun 10.
    [4]Wu W,Sun B,Li Y,Cheng S,Wang E,Zhang S,inventors;China Petroleum&Chemical Corporation,Research Institute of Petroleum Processing,Sinopec,assignees.Process for ammoximation of carbonyl compounds.United States patent US 7408080.2008 Aug 5.
    [5]Cheng S,Min E,Wu W,Sun B,Zhang S,Wang E,inventors;China Patent Agent(Hong Kong)Co.,Ltd.,assignee.A method of cyclohexanone oxime’s gas phase rearrangement to caprolactam.China patent CN 100497316.2003 Nov 28.Chinese.
    [6]Cheng S,Min E,Wu W,Sun B,Zhang S,Wang E,inventors;China Petroleum&Chemical Corporation,Research Institute of Petroleum Processing,Sinopec,assignees.A preparation method of zeolite catalyst with an MFI structure.China patent CN 1600428.2003 Sep 28.Chinese.
    [7]Mu X,Zong B,Min E,Wang X,Wang Y,Zhang X,et al.,inventors;China Petrole-um Corporation,Research Institute of Petroleum Processing,Sinopec,assignees.Hydrogenation catalyst and its preparation.United States patent US 6368996.2002 Apr 9.
    [8]Meng X,Mu X,Zong B,Min E,Zhu Z,Fu S,et al.Purification of caprolactam in magnetically stabilized bed reactor.Catal Today 2003;79–80:21–7.
    [9]Xu K,Sun B,Lin J,Wen W,Pei Y,Yan S,et al.e-Iron carbide as a low-temperature Fischer-Tropsch synthesis catalyst.Nat Commun 2014;5:5783.
    [10]Zong B.Amorphous Ni alloy hydrogenation catalyst and magnetically stabilized bed reaction technology.Catal Surv Asia 2007;11(1):87–94.
    [11]Pei Y,Zhou G,Luan N,Zong B,Qiao M,Tao F.Synthesis and catalysis of chemically reduced metal-metalloid amorphous alloys.Chem Soc Rev 2012;41(24):8140–62.
    [12]Zong B,Mu X,Zhang X,Meng X,Qiao M.Research,development,and application of amorphous nickel alloy catalysts prepared by melt-quenching.Chinese J Catal2013;34(5):828–37.
    [13]Zhou G,Pei Y,Jiang Z,Fan K,Qiao M,Sun B,et al.Doping effects of B in Zr O2 on structural and catalytic properties of Ru/B-Zr O2 catalysts for benzene partial hydrogenation.J Catal 2014;311:393–403.
    [14]Zong B,Zhang X,Qiao M.Integration of methanation into the hydrogenation process of benzoic acid.AICh E J 2009;55(1):192–7.
    [15]Zhu L,Guo P,Chu X,Yan S,Qiao M,Fan K,et al.An environmentally benign and catalytically efficient non-pyrophoric Ni catalyst for aqueous-phase reforming of ethylene glycol.Green Chem 2008;10(12):1323–30.
    [16]Hu J,Fan Y,Pei Y,Qiao M,Fan K,Zhang X,et al.Shape effect of Zn O crystals as cocatalyst in combined reforming-hydrogenolysis of glycerol.ACS Catal2013;3(10):2280–7.
    [17]Zong B,Meng X,Mu X,Zhang X.Magnetically stabilized bed reactors.Chinese J Catal 2013;34(1):61–8.
    [18]Fan J,Zong B,Zhang X,Meng X,Mu X,Yu G,et al.Rapidly quenched skeletal Fe-based catalysts for Fischer-Tropsch synthesis.Ind Eng Chem Res2008;47(16):5918–23.
    [19]Yu G,Sun B,Pei Y,Xie S,Yan S,Qiao M,et al.Fex Oy@C spheres as an excellent catalyst for Fischer-Tropsch synthesis.J Am Chem Soc 2010;132(3):935–7.
    [20]Sun B,Yu G,Lin J,Xu K,Pei Y,Yan S,et al.A highly selective Raney Fe@HZSM-5 Fischer-Tropsch synthesis catalyst for gasoline production:One-pot synthesis and unexpected effect of zeolites.Catal Sci Technol 2012;2:1625–9.
    [21]Sun B,Jiang Z,Fang D,Xu K,Pei Y,Yan S,et al.One-pot approach to a highly robust iron oxide/reduced graphene oxide nanocatalyst for Fischer-Tropsch synthesis.Chem Cat Chem 2013;5(3):714–9.
    [22]Sun B,Lin J,Xu K,Pei Y,Yan S,Qiao M,et al.Fischer-Tropsch synthesis over skeletal Fe-Ce catalysts leached from rapidly quenched ternary Fe-Ce-Al alloys.Chem Cat Chem 2013;5(12):3857–65.
    [23]Cheng Y,Lin J,Xu K,Wang H,Yao X,Pei Y,et al.Fischer-Tropsch synthesis to lower olefins over potassium-promoted reduced graphene oxide supported iron catalysts.ASC Catal 2016;6(1):389–99.
    [24]Xu K,Cheng Y,Lin J,Wang H,Xie S,Pei Y,et al.Nanocrystalline iron-boron catalysts for low-temperature CO hydrogenation:Selective liquid fuel production and structure-activity correlation.J Catal 2016;339:102–10.
    [25]Pan Z,Dong M,Meng X,Zhang X,Mu X,Zong B.Integration of magnetically stabilized bed and amorphous Nickel alloy catalyst for CO methanation.Chem Eng Sci 2007;62(10):2712–7.
    [26]Dong M,Pan Z,Peng Y,Meng X,Mu X,Zong B,et al.Selective acetylene hydrogenation over core-shell magnetic Pd-supported catalysts in a magnetically stabilized bed.AICh E J 2008;54(5):1358–64.
    [27]Peng Y,Dong M,Meng X,Zong B,Zhang J.Light FCC gasoline olefin oligomerization over a magnetic Ni SO4/γ-Al2O3 catalyst in a magnetically stabilized bed.AICh E J 2009;55(3):717–25.
    [28]Cheng M,Xie W,Zong B,Sun B,Qiao M.When magnetic catalyst meets magnetic reactor:Etherification of FCC light gasoline as an example.Sci Rep 2013;3:1973.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700