煤油燃料超燃发动机燃烧室温度测量与计算分析
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Temperature measurement and calculation analysis in a kerosene-fueled scramjet combustor
  • 作者:晏至辉 ; 肖保国 ; 何粲 ; 刘彧 ; 李国华 ; 叶景峰
  • 英文作者:YAN Zhihui;XIAO Baoguo;HE Can;LIU Yu;LI Guohua;YE Jingfeng;Science and Technology on Scramjet Laboratory,Hypervelocity Aerodynamics Institute,China Aerodynamics Research and Development Center;State Key Laboratory of Laser Interaction with Matter,Northwest Institute of Nuclear Technology;
  • 关键词:超燃发动机 ; 温度测量 ; 相干反斯托克斯拉曼散射 ; 并行计算 ; 煤油燃料
  • 英文关键词:scramjet;;temperature measurement;;coherent anti-Stokes Raman scattering;;parallel computation;;kerosene fuel
  • 中文刊名:HKDI
  • 英文刊名:Journal of Aerospace Power
  • 机构:中国空气动力研究与发展中心超高速空气动力研究所高超声速冲压发动机技术重点实验室;西北核技术研究所激光与物质相互作用国家重点实验室;
  • 出版日期:2019-03-20 12:08
  • 出版单位:航空动力学报
  • 年:2019
  • 期:v.34
  • 基金:国家自然科学基金(91641126,91441204)
  • 语种:中文;
  • 页:HKDI201903002
  • 页数:8
  • CN:03
  • ISSN:11-2297/V
  • 分类号:16-23
摘要
为获得超燃冲压发动机燃烧室流场温度分布特性,深入分析发动机工作特性,对马赫数为2.0,总温为1 100K,总压为1.0MPa的来流,利用可调谐的相干反斯托克斯拉曼散射(CARS)技术完成了直连式燃烧室流场温度测量;同时对实验状态进行了三维并行数值模拟,对比分析了计算和实验结果的差异。结果表明,隔离段温度的实验测量值与计算结果的最大相对误差约为0.8%;在燃烧室核心流区域,当量比为0.6和0.8两个状态下,实验测量值分别比计算值偏低约40K和150K,相对差异为4.2%和13%;在凹槽回流区内,当量比为0.6和0.8时实验值则分别比计算值偏低约140K和170K,相对差异为11.7%和7.5%。主喷油位置喷入当量比为0.2的燃料对燃烧室区域的温度和压力分布会产生较大影响,但对扩张段及后部区域的推力性能不会产生显著的改变。
        In order to obtain temperature distribution of the scramjet combustor and analyze working characteristics of the engine,temperature measurement was conducted via tunable coherent anti-Stokes Raman scattering(CARS)technique in a direct-connect combustor at the inflow Mach number 2.0,stagnation temperature 1 100 Kand stagnation pressure 1.0 MPa.Three-dimensional parallel numerical simulation on the experimental condition was carried out to compare the difference between the experimental and numerical results.Results showed that the temperatures of the incoming flow in the isolator obtained in experiment and numerical simulation had a maximum relative error of 0.8%.In the core flow of the combustor,at equivalence ratios of 0.6 and 0.8,the measured temperatures were 40 K and 150 Kbelow the simulated values,respectively and the relative errors were 4.2% and13%,respectively.In the recirculation flow of the cavity,the measured temperature was 140 K below the simulated value at equivalence ratio of 0.6,with a relative error of 11.7% and170 Kbelow at equivalence of 0.8,with a relative error of 7.5%.Both the numerical simulation and the experiment show that temperature and pressure distributions in the combustor are significantly influenced when the fuel of equivalence ratio of 0.2 is injected at the main fuel injector,but thrust performance of the expansion section and downstream region will not make much difference.
引文
[1]ALEXANDER V M,ALIREZA R B.A review of exhaust gas temperature sensing techniques for modern turbine engine controls[R].AIAA-2014-3977,2014.
    [2]陶波,胡志云,王晟,等.TDLAS技术测量燃烧流场温度研究[J].工程热物理学报,2014,35(2):401-404.TAO Bo,HU Zhiyun,WANG Sheng,et al.Study on the measurement of combustion temperature based on TDLASTechnique[J].Journal of Engineering Thermophysics,2014,35(2):401-404.(in Chinese)
    [3]李飞,余西龙,顾洪斌,等.超燃燃烧室气流参数诊断[J].力学学报,2011,43(6):1061-1067.LI Fei,YU Xilong,GU Hongbin,et al.Measurement of flow parameters in a scramjet combustor based on near-infrared absorption[J].Chinese Journal of Theoretical and Applied Mechanics,2011,43(6):1061-1067.(in Chinese)
    [4]屈东胜,洪延姬,王广宇,等.基于激光吸收光谱技术的超声速气流测量研究[J].推进技术,2014,35(6):852-857.QU Dongsheng,HONG Yanji,WANG Guangyu,et al.Measurements of supersonic gas flow based on laser absorption spectroscopy[J].Journal of Propulsion Technology,2014,35(6):852-857.(in Chinese)
    [5]张立荣,胡志云,叶景峰,等.移动式CARS系统测量超声速燃烧室出口温度[J].中国激光,2013,40(4):0408007.1-0408007.5.ZHANG Lirong,HU Zhiyun,YE Jingfeng,et al.Mobile CARS temperature measurements at exhaust of supersonic combustor[J].Chinese Journal of Lasers,2013,40(4):0408007.1-0408007.5.(in Chinese)
    [6]陶波,王晟,胡志云,等.TDLAS与CARS共线测量发动机温度[J].工程热物理学报,2015,36(10):2282-2286.TAO Bo,WANG Sheng,HU Zhiyun,et al.Measurements of engine combustion temperature by using coaxial TDLASand CARS technique[J].Journal of Engineering Thermophysics,2015,36(10):2282-2286.(in Chinese)
    [7]CUTLER A D,MAGNOTTI G,CANTU L,et al.Dualpump coherent anti-stokes raman spectroscopy measurements in a dual-mode scramjet[J].Journal of Propulsion and Power,2014,30(3):539-549.
    [8]赵建荣,杨仕润,俞刚.CARS在超音速燃烧研究中的应用[J].激光技术,2000,24(4):207-212.ZHAO Jianrong,YANG Shirun,YU Gang.Study of supersonic combustion by CARS measurement technique[J].Laser Technology,2000,24(4):207-212.(in Chinese)
    [9]李仁兵,苏铁,张龙,等.燃烧流场线CARS测温技术研究[J].光谱学与光谱分析,2016,36(12):3968-3972.LI Renbing,SU Tie,ZHANG Long,et al.Study on line CARS for temperature measurement in combustion flow field[J].Spectroscopy and Spectral Analysis,2016,36(12):3968-3972.(in Chinese)
    [10]胡志云,张振荣,刘晶儒,等.用单次脉冲非稳腔空间增强探测CARS技术测量火焰温度[J].中国激光,2004,31(5):610-612.HU Zhiyun,ZHANG Zhenrong,LIU Jingru,et al.Temperature measurement in CH4/air flame by single pulse USED CARS[J].Chinese Journal of Lasers,2004,31(5):610-612.(in Chinese)
    [11]胡志云,叶景峰,张振荣,等.航空发动机地面试验激光燃烧诊断技术研究进展[J].实验流体力学,2018,32(1):33-42.HU Zhiyun,YE Jingfeng,ZHANG Zhenrong,et al.Development of laser combustion diagnostic techniques for ground aero-engine testing[J].Journal of Experiments in Fluid Mechanics,2018,32(1):33-42.(in Chinese)
    [12]MAGNOTTI G,CUTLER A D,DANEHY P.Development of a dual-pump CARS system for measurements in a supersonic combusting freejet[R].AIAA-2012-1193,2012.
    [13]CUTLER A D,MAGNOTTI G,CANTU L,et al.Dualpump CARS measurements in the university of virginia’s dual-mode scramjet:configuration“A”[R].AIAA-2012-0114,2012.
    [14]赵俭.基于CARS的高温燃气温度测量技术[J].计测技术,2015,35(2):1-5.ZHAO Jian.High gas temperature measuring technology based on CARS[J].Metrology&Measurement Technology,2015,35(2):1-5.(in Chinese)
    [15]李国华,胡志云,王晟,等.基于相干反斯托克斯拉曼散射的二维温度场扫描测量[J].光学精密工程,2016,24(2):14-19.LI Guohua,HU Zhiyun,WANG Shen,et al.2Dscanning CARS for temperature distribution measurement[J].Opticsand Precision Engineering,2016,24(2):14-19.(in Chinese)
    [16]王明瑞,王振华,韩冰,等.航空发动机主燃烧室高温测试技术[J].航空发动机,2016,42(5):87-93.WANG Mingrui,WANG Zhenhua,HAN Bing,et al.High temperature measurement technology for main combustion chamber of aeroengine[J].Aeroengine,2016,42(5):87-93.(in Chinese)
    [17]陈敏,宋文艳,肖隐利.斜切径向旋流燃烧室主燃区光学测量与特性分析[J].航空动力学报,2013,28(8):1727-1735.CHEN Min,SONG Wenyan,XIAO Yinli,et al.Optical measurement and characteristic analysis of aeroengine combustor primary zone with counter-rotating swirler[J].Journal of Aerospace Power,2013,28(8):1727-1735.(in Chinese)
    [18]肖保国,田野,张顺平,等.亚燃模态下释热分布对发动机性能的影响[J].推进技术,2016,37(11):2017-2022.XIAO Baoguo,TIAN Ye,ZHANG Shunping,et al.Effects of heat release distribution on scramjet performance under ramjet mode conditions[J].Journal of Propulsion Technology,2016,37(11):2017-2022.(in Chinese)
    [19]肖保国,晏至辉,田野,等.超燃发动机燃烧模态判别准则初步研究[J].推进技术,2015,36(8):1121-1126.XIAO Baoguo,YAN Zhihui,TIAN Ye,et al.Preliminary study on distinguish criterion of combustion mode for scramjet[J].Journal of Propulsion Technology,2015,36(8):1121-1126.(in Chinese)
    [20]XIAO Baoguo,XING Jianwen,TIAN Ye,et al.Experimental and numerical investigations of combustion mode transition in a direct-connect scramjet combustor[J].Aerospace Scienceand Technology,2015,46:331-338.
    [21]田野,肖保国,张顺平,等.双模态冲压发动机燃烧性能初步研究[J].航空动力学报,2016,31(12):2921-2927.TIAN Ye,XIAO Baoguo,ZHANG Shunping,et al.Preliminary study on combustion performance of dual-mode scramjet engine[J].Journal of Aerospace Power,2016,31(12):2921-2927.(in Chinese)
    [22]邓维鑫,乐嘉陵,王西耀.空气节流对超燃发动机燃烧性能的影响[J].航空动力学报,2013,28(2):316-323.DENG Weixin,LE Jialing,WANG Xiyao,et al.Air-throttling effect of scramjet combustion characteristics[J].Journal of Aerospace Power,2013,28(2):316-323.(in Chinese)
    [23]杨顺华.碳氢燃料超燃冲压发动机数值研究[D].四川绵阳:中国空气动力研究与发展中心,2006.YANG Shunhua.Numerical study of hydrocarbon fueled scramjets[D].Mianyang Sichuan:China Aerodynamics Research and Development Center,2006.(in Chinese)
    [24]LE Jialing,YANG Shunhua,WANG Xiyao.Numerical investigations of unsteady spray combustion in a liquid kerosene fueled scramjet[R].ISABE-2011-1524,2011.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700