超声振幅对石英玻璃表面钎料铺展行为的影响
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Effect of ultrasonic amplitude on dynamic spread behavior of solder droplets on quartz glass surface
  • 作者:马志鹏 ; 于海洋 ; 许志武 ; 袁月 ; 崔巍 ; 闫久春
  • 英文作者:MA Zhi-peng;YU Hai-yang;XU Zhi-wu;YUAN Yue;CUI Wei;YAN Jiu-chun;Northeast Petroleum University, Department of Materials Science and Engineering;Harbin Institute of Technology, State Key Laboratory of Advanced Welding and Joining;
  • 关键词:超声波 ; 石英玻璃 ; 钎料液滴 ; 铺展
  • 英文关键词:ultrasonic;;quartz glass;;solder droplet;;spreading
  • 中文刊名:ZYXZ
  • 英文刊名:The Chinese Journal of Nonferrous Metals
  • 机构:东北石油大学材料科学与工程系;哈尔滨工业大学先进焊接与连接国家重点实验室;
  • 出版日期:2019-04-15
  • 出版单位:中国有色金属学报
  • 年:2019
  • 期:v.29;No.241
  • 基金:国家自然科学基金资助项目(51674090,51574099,51607035)~~
  • 语种:中文;
  • 页:ZYXZ201904014
  • 页数:10
  • CN:04
  • ISSN:43-1238/TG
  • 分类号:114-123
摘要
研究不同振幅超声作用下Sn-9Zn共晶钎料液滴在石英玻璃表面动态铺展行为,并利用ANSYS ICEM CFD软件构建石英玻璃/钎料液滴二维流-固耦合的网格模型,在Fluent的2D求解器中进行数值模拟,分析不同振幅的超声对钎料液滴内部压力变化的影响。结果表明:当超声振幅为4μm时,钎料液滴最终铺展面积为0.193 cm~2;随超声振幅增加,最终铺展面积增大,超声振幅为6μm和8μm时,钎料液滴最终铺展面积分别为0.242 cm~2和0.395 cm~2。超声振幅一定时,随时间延长,钎料液滴铺展速率逐渐降低;随超声振幅增加,同一时刻钎料液滴铺展速率增大。未施加超声时钎料液滴内各位置压力均为正压,且压力值小于400 Pa,而施加超声后钎料液滴内部压力产生周期性正负交替变化,且随超声振幅增加,钎料液滴内部压力绝对值显著增加。当超声振幅为4μm时,钎料液滴内部压力绝对值最大约为700 kPa;超声振幅为8μm时,钎料液滴内部压力绝对值最大可达1400 kPa。钎料液滴上各点均存在类正弦变化压力,其声压偏移量沿液滴顶部向下逐渐增大,在下边缘位置处达到最大。由于钎料液滴受类正弦变化且偏移量不同的压力,液滴沿偏移量梯度方向流动,从而导致钎料液滴发生铺展,最终钎料液滴外观形态发生显著变化。
        The dynamic spreading behavior of Sn-9 Zn eutectic solder droplets was investigated on the surface of quartz glass using ultrasonic waves with different amplitudes. The two-dimensional flow-solid coupling model of quartz glass/solder droplets was constructed using ANSYS ICEM CFD software and the numerical simulations were performed on Fluent 2 D solver to analyse the influence of the internal pressure of the solder droplets at different ultrasonic amplitudes. The results show that when the ultrasonic amplitude is 4 μm, the final spreading area of the solder droplet is0.193 cm~2. With an increase in the ultrasonic amplitude, the final spreading area of the droplets increases. When the ultrasonic amplitudes are 6 and 8 μm, the final spreading areas of the solder droplets are 0.242 and 0.395 cm~2,respectively. When the ultrasonic amplitude is constant, the spreading rate of the solder droplets decreases gradually with time, whereas with an increase in the ultrasonic amplitude, their spreading rate increases. When no ultrasonic is applied,the pressure on the position of each solder droplet is positive and is less than 400 Pa. After the application of ultrasonic,the internal pressure of the solder droplets becomes periodic, alternating between positive and negative. And with an increase in the ultrasonic amplitude, the absolute value of the internal pressure of the solder droplets increases significantly. When the ultrasonic amplitude is 4 μm, the absolute value of the internal pressure of the solder droplets is about 700 kPa, and at 8 μm in ultrasonic amplitude, the absolute value of their internal pressure can reach 1400 kPa.There is a sine-like variation in pressure at each point of the solder droplets, and the sound pressure offset gradually increases from the top down, reaching a maximum at the droplets' lower edge. Since the solder droplets are subjected to pressures with sine-like variations and different offsets, the droplets flow along the direction of the offset gradient, which causes them to spread in such a way that, finally, the appearance and morphology of the solder droplets change significantly.
引文
[1]仇中军,伊萍,卢翠,房丰洲.石英玻璃表面改性后的力学特性分析[J].材料科学与工程学报,2013,31(1):6-10.QIU Zhong-jun,YI Ping,LU Cui,FANG Feng-zhou.Mechanical property analysis of modified quartz glass[J].Journal of Materials Science and Engineering,2013,31(1):6-10.
    [2]周红伟,谷美林,魏智,张建华.超声振动辅助微铣削石英玻璃铣削力的研究[J].工具技术,2014,48(5):32-35.ZHOU Hong-wei,GU Mei-lin,WEI Zhi,ZHANG Jian-hua.Research on milling force in ultrasonic vibration micro-milling of transparent quartz glass[J].Tool Engineering,2014,48(5):32-35.
    [3]苏英,贺行洋,向在奎,余刚.石英玻璃的结构缺陷及其形成机理[J].武汉理工大学学报,2007,29(8):50-54.SU Ying,HE Xing-yang,XIANG Zai-kui,YU Gang.Structural defects and formation mechanism in silica glasses[J].Journal of Wuhan University of Technology,2007,29(8):50-54.
    [4]崔新强,蒋宝财,郭向朝.石英玻璃表面金属沉积层的界面研究[J].材料保护,2008,41(9):5-7.CUI Xin-qiang,JIANG Bao-cai,GUO Xiang-chao.Interface research of metal deposited layer on quartz glass surface[J].Materials Protection,2008,41(9):5-7.
    [5]严增濯.石英玻璃与金属封接技术进展[J].光源与照明,2005(4):14-18.YAN Zeng-zhuo.Sealing technology progress in quartz glass and metal[J].Lamps and Lighting,2005(4):14-18.
    [6]李海兵,蒋宝财,刘建军,林文正,胡丽丽.脉冲氙灯用新型复合石英玻璃管性能的研究[J].武汉理工大学学报,2007,29(s1):101-104.LI Hai-bing,JIANG Bao-cai,LIU Jian-jun,LIN Wen-zheng,HU Li-li.Research on properties of compound silica glass tube for xenon flash lamp[J].Journal of Wuhan University of Technology,2007,29(s1):101-104.
    [7]KNAPKIEWICZ P,CICHY B,POSADOWSKI W,TADASZAK K,SNIADEK P,DZIUBAN J.Anodic bonding of glass-to-glass through magnetron spattered nanometric silicon layer[J].Procedia Engineering,2011,25(25):1629-1632.
    [8]MROZEK P.Anodic bonding of glasses with interlayers for fully transparent device application[J].Sensors and Actuators A:Physical,2009,151(1):77-80.
    [9]XING Q F,SASAKI G.Nanostructured gamma-alumina formed during anodic bonding of Al/glass[J].Solid State Lonics,2007,178(3/4):179-185.
    [10]LIU D,ZHANG L X,FENG J C,LIU H B,HE P.Microstructure and fracture behavior of Si O2 glass ceramic and TC4 alloy joint brazed with Ti Zr Ni Cu alloy[J].Journal of Central South University of Technology,2009,16(5):713-716.
    [11]刘多,张丽霞,何鹏,冯吉才.SiO2玻璃陶瓷与TC4软合金的活性钎焊[J].焊接学报,2009,30(2):117-120.LIU Duo,ZHANG Li-xia,HE Peng,FENG Ji-cai.Active brazing of Si O2 glass ceramic and TC4 soft alloy[J].Transactions of the China Welding Institution,2009,30(2):117-120.
    [12]KOEBEL M M,HAWI N E,LU J,GATTIKER F,NEUENSCHWANDER J.Anodic bonding of activated tin solder alloys in the liquid state:A novel large-area hermetic glass sealing method[J].Solar Energy Materials and Solar Cells,2011,95(11):3001-3008.
    [13]闫久春,杨春利,刘会杰,崔炜,谢伟峰,郭卫兵.超声复合焊接研究现状及科学问题[J].机械工程学报,2015,51(24):41-49.YAN Jiu-chun,YANG Chun-li,LIU Hui-jie,CUI Wei,XIEWei-feng,GUO Wei-bing.Overview on ultrasonic-assisted welding and its scientific issues[J].Journal of Mechanical Engineering,2015,51(24):41-49.
    [14]CHEN X,YAN J,REN S,WEI J,WANG Q.Ultrasonic-assisted brazing of Si C ceramic to Ti-6Al-4Valloy using a novel AlSnSiZnMg filler metal[J].Materials Letters,2013,105(a1):120-123.
    [15]孙小磊.超声波振动辅助钎焊玻璃的工艺及机理研究[D].哈尔滨:哈尔滨工业大学,2009.SUN Xiao-lei.Progress and mechanism of ultrasonic vibration assisted soldering glass[D].Harbin:Harbin Institute of Technology,2009.
    [16]KHALID M H,NAKA M.Mechanism of ultrasonic irradiation on joining of alumina/copper[J].Trans JWRI,2002,31(2):177-180.
    [17]闫久春,孙小磊.超声波振动辅助钎焊技术[J].焊接,2009(3):6-13.YAN Jiu-chun,SUN Xiao-Lei.Ultrasonic vibration assisted brazing technology[J].Welding&Joining,2009(3):6-13.
    [18]张洋,闫久春,陈晓光.SiCp/A356复合材料超声波辅助钎焊[J].焊接学报,2009,30(3):89-92.ZHANG Yang,YAN Jiu-chun,CHEN Xiao-Guang.Si Cp/A356 composites of ultrasonic assisted brazing[J].Transactions of the China Welding Institution,2009,30(3):89-92.
    [19]YOSHIDA S,SANGLEBOEUF J C,ROUXEL T.Quantitative evaluation of indentation-induced densification in glass[J].Journal of Materials Research,2005,20(12):3404-3412.
    [20]XU Z H,LI X.Effect of sample tilt on nanoindentation behaviour of materials[J].Philosophical Magazine,2007,87(16):2299-2312.
    [21]GANCARZ T,PSTRU?J,GASIOR W,HENEIN H.Physicochemical properties of Sn-Zn and SAC+Bi alloys[J].Journal of Electronic Materials,2013,42(2):288-293.
    [22]王福军.计算流体动力学分析:CFD软件原理与应用[M].北京:清华大学出版社,2004:113-142.WANG Fu-jun.An analysis of computational dynamics-the principle and application of CFD software[M].Beijing:Tsinghua University Press,2004:113-142.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700