ABR-MBR工艺反硝化除磷微生物群落特征分析
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Analysis of microbial community characteristics of denitrifying phosphorus removal in the ABR-MBR process
  • 作者:蒋志云 ; 韦佳敏 ; 缪新年 ; 潘家成 ; 刘文如 ; 沈耀良
  • 英文作者:JIANG Zhiyun;WEI Jiamin;MIAO Xinnian;PAN Jiacheng;LIU Wenru;SHEN Yaoliang;School of Environmental Science and Engineering, Suzhou University of Science and Technology;Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment;Key Laboratory of Environmental Science and Engineering of Jiangsu Province;
  • 关键词:反硝化除磷 ; ABR-MBR ; 微生物群落 ; 高通量测序 ; 硝化液回流比
  • 英文关键词:denitrifying phosphorus removal;;ABR-MBR;;microbial community characteristics;;high-throughput sequencing;;nitrite recycling ratio
  • 中文刊名:HJJZ
  • 英文刊名:Chinese Journal of Environmental Engineering
  • 机构:苏州科技大学环境科学与工程学院;江苏省水处理技术与材料协同创新中心;江苏省环境科学与工程重点实验室;
  • 出版日期:2019-03-19 09:56
  • 出版单位:环境工程学报
  • 年:2019
  • 期:v.13
  • 基金:国家自然科学基金面上资助项目(51578353)
  • 语种:中文;
  • 页:HJJZ201907019
  • 页数:9
  • CN:07
  • ISSN:11-5591/X
  • 分类号:147-155
摘要
为了揭示ABR-MBR组合工艺中反硝化除磷微生物种群演替规律,采用Miseq高通量测序技术考察了该工艺在不同运行阶段除磷功能区的微生物群落结构。结果表明,硝化液回流比逐步从150%提升至300%可促进反硝化除磷菌大量富集,促进系统的启动和稳定运行;系统在运行过程中始终保持较高的微生物多样性;优势微生物种群均以变形菌门(Proteobacteria)和拟杆菌门(Bacteroidetes)为主,最大丰度分别为55.13%和7.76%,且变形菌门功能性微生物主要集中在γ-变形菌纲(Gamaproteobacteria);功能性除磷菌属主要为气单胞菌属(Aeromonas),假单胞菌属(Pseudomonas)和黄杆菌属(Flavobacterium);其中在逐步提升硝化液回流比过程中气单胞菌属(Aeromonas)被大量富集,其在γ-变形菌纲(Gamaproteobacteria)的相对丰度由5.30%上升至41.49%并在系统后续运行中维持主导地位。系统除磷效果与功能性除磷微生物相对丰度的变化密切相关。系统中微生物种群的多样性和功能微生物的结构稳定性为ABR-MBR工艺的稳定运行和高效处理提供了保证。
        In order to reveal the microbial population evolution of denitrifying phosphorus removal in a labscale ABR-MBR combined process, the Miseq high-throughput sequencing technology was used to identify the microbial community structure in phosphorus removal functional zone at different operation stages of the process. Results indicated that the gradual increase of the nitrifying solution reflux ratio from 150% to 300%could promote a large enrichment of denitrifying phosphorus bacteria(DPBs), as well as the startup and stable operation of the system. The system maintained high microbial diversity throughout the operation. The dominant phyla were Proteobacteria and Bacteroidetes, and their maximum abundances were 55.13% and 7.76%,respectively. The main subgroups of the Proteobacteria were related to Gamaproteobacteria. The functional phosphorus removal bacteria were Aeromonas, Pseudomonas and Flavobacterium. Of which Aeromonas was largely enriched during the gradual increase of the nitrifying solution reflux ratio. Its relative abundance in the γ-Proteobacteria phylum(Gamaproteobacteria) increased from 5.30% to 41.49%, and remained dominant in the subsequent operation of the system. The phosphorus removal efficiency of the system was closely related to the change in the relative abundance of functional phosphorus removal microorganisms. The diversity of microbial population and the structural stability of functional microorganisms in the system provided a guarantee for the stable operation and efficient performance of ABR-MBR process.
引文
[1]LV X M,SHAO M F,LI C L,et al.A comparative study of the bacterial community in denitrifying and traditional enhanced biological phosphorus removal processes[J].Microbes&Environments,2014,29(4):261-268.
    [2]吴继滨,沈耀良,郭海娟.SBR中短程反硝化除磷菌的培养驯化研究[J].环境科学与技术,2011,34(10):127-129.
    [3]韦佳敏,蒋志云,程诚.ABR-MBR反硝化除磷工艺的启动及稳定运行[J].环境科学,2019,40(2):808-815.
    [4]KUBA T,SMOLDERS G,LOOSDRECHT M C M V.Biological phosphorus removal from wastewater by anaerobic-anoxic sequencing batch reactor[J].Water Science&Technology,1993,27(5/6):241-252.
    [5]KUBA T,LOOSDRECHT M C M V,BRANDSE F A,et al.Occurrence of denitrifying phosphorus removing bacteria in modified UCT-type wastewater treatment plants[J].Water Research,1997,31(4):777-786.
    [6]夏围围,贾仲君.高通量测序和DGGE分析土壤微生物群落的技术评价[J].微生物学报,2014,54(12):1489-1499.
    [7]汪瑶琪,张敏,姜滢,等.厌氧氨氧化启动过程及微生物群落结构特征[J].环境科学,2017,38(12):5184-5191.
    [8]李相昆.反硝化除磷工艺与微生物学研究[D].哈尔滨:哈尔滨工业大学,2006.
    [9]蒋永荣,胡明成,李学军,等.ABR处理硫酸盐有机废水的相分离特性研究[J].环境科学,2010,31(7):1544-1553.
    [10]程朝阳,赵诗惠,吕亮,等.基于ABR-MBR组合工艺优化反硝化除磷性能的研究[J].环境科学,2016,37(11):4282-4288.
    [11]陈谊,孙宝盛,张斌,等.不同MBR反应器中硝化菌群落结构的研究[J].中国环境科学,2010,30(1):69-75.
    [12]吴鹏,陆爽君,徐乐中,等.ABR-MBR一体化工艺节能降耗措施优化研究[J].环境科学,2015,36(8):2934-2938.
    [13]吕亮,尤雯,张敏,等.硝化液回流比对ABR-MBR工艺反硝化除磷效能的影响[J].环境科学,2018,39(3):1309-1315.
    [14]国家环境保护总局.水和废水监测分析方法[M].4版.北京:中国环境科学出版社,2002.
    [15]ZHANG X L,TIAN X Q,MA L Y,et al.Biodiversity of the symbiotic bacteria associated with toxic marine dinoflagellate Alexandrium tamarense[J].Journal of Biosciences and Medicines,2015,3(6):23-28.
    [16]SHU D T,HE Y L,YUE H,et al.Metagenomic insights into the effects of volatile fatty acids on microbial community structures and functional genes in organotrophic anammox process[J].Bioresource Technology,2015,196:621-633.
    [17]陈重军,张海芹,汪瑶琪,等.基于高通量测序的ABR厌氧氨氧化反应器各隔室细菌群落特征分析[J].环境科学,2016,37(7):2652-2658.
    [18]赵诗惠,吕亮,蒋志云,等.ABR-MBR组合工艺短程硝化过程的微生物种群[J].中国环境科学,2018,38(2):566-573.
    [19]刘晖,孙彦富,周康群,等.PCR-DGGE法研究Sludge bio-membrane(SB)系统中反硝化聚磷菌的变化[J].中南大学学报,2011,42(4):1167-1174.
    [20]杨浩,张国珍,杨晓妮,等.16S rRNA高通量测序研究集雨窖水中微生物群落结构及多样性[J].环境科学,2017,38(4):1704-1716.
    [21]NICHOLSON W L,MUNAKATA N,HORNECK G,et al.Resistance of Bacillus endospores to extreme terrestrial and extraterrestrial environments[J].Microbiology&Molecular Biology Review,2000,64(3):548-572.
    [22]YANG C,ZHANG W,LIU R,et al.Phylogenetic diversity and metabolic potential of activated sludge microbial communities in full-scale wastewater treatment plants[J].Environmental Science&Technology,2011,45(17):7408-7415.
    [23]JURETSCHKO S,LOY A,LEHNER A,et al.The microbial community composition of a nitrifying-denitrifying activated sludge from an industrial sewage treatment plant analyzed by the full-cycle rRNA approach[J].Systematic&Applied Microbiology,2002,25(1):84-99.
    [24]刘君寒,胡光荣,李福利,等.厌氧消化系统微生物菌群的研究进展[J].工业水处理,2011,31(10):10-14.
    [25]WONG M T,MINO T,SEVIOUR R J,et al.In situ identification and characterization of the microbial community structure of full-scale enhanced biological phosphorous removal plants in Japan[J].Water Research,2005,39(13):2901-2914.
    [26]罗宁,罗固源,吉方英,等.新型双泥生物反硝化除磷脱氮系统中微生物的组成[J].给水排水,2003,29(8):33-35.
    [27]刘立,汤兵,黄绍松,等.反硝化聚磷菌快速富集、培养及其荧光原位杂交技术鉴别[J].环境科学,2013,34(7):2869-2875.
    [28]焦中志,李相昆,张立成,等.反硝化聚磷菌菌种筛分与除磷特性分析[J].沈阳建筑大学学报,2009,25(3):535-540.
    [29]熊付娟.反硝化除磷污泥除磷脱氮特性及菌群结构研究[D].哈尔滨:哈尔滨工业大学,2012.
    [30]常玉梅,杨琦,郝春博,等.城市污水厂活性污泥强化自养反硝化菌研究[J].环境科学,2011,32(4):1210-1216.
    [31]CECH J S,HARTMAN P.Competition between polyphosphate and polysaccharide accumulating bacteria in enhanced biological phosphate removal systems[J].Water Research,1993,27(7):1219-1225.
    [32]傅以钢,戴睿,刘洪波,等.除磷工艺中含氧条件对聚磷菌种群结构影响研究[J].环境科学,2008,29(2):474-481.
    [33]吴昌永,彭永臻,王淑莹,等.强化反硝化除磷对A2O工艺微生物种群变化的影响[J].化工学报,2010,61(1):186-191.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700