针织蚕丝网力学与生物相容性及皮下埋植实验
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Mechanical property, biocompatibility, and subcutaneous implantation of knitted silk mesh
  • 作者:李跃中 ; 杨亚冬 ; 唐靓 ; 张文元
  • 英文作者:LI Yuezhong;YANG Yadong;TANG Liang;ZHANG Wenyuan;Institute of Health Food, Zhejiang Academy of Medical Sciences;Institute of Bioengineering, Zhejiang Academy of Medical Sciences;
  • 关键词:蚕丝网状支架 ; 力学性能 ; 骨髓间充质干细胞 ; 生物相容性 ; 埋植
  • 英文关键词:mesh-shaped silk scaffold;;mechanical property;;bone marrow-derived mesenchymal stem cells;;biocompatibility;;subcutaneous implantation
  • 中文刊名:YCGC
  • 英文刊名:China Medical Engineering
  • 机构:浙江省医学科学院保健食品研究所;浙江省医学科学院生物工程研究所;
  • 出版日期:2019-03-11 10:29
  • 出版单位:中国医学工程
  • 年:2019
  • 期:v.27
  • 基金:浙江省自然科学基金(LY17H060011);; 浙江省医药卫生科技计划项目(2017KY303)
  • 语种:中文;
  • 页:YCGC201902001
  • 页数:5
  • CN:02
  • ISSN:11-4983/R
  • 分类号:5-9
摘要
目的进行蚕丝丝素纤维网状支架的力学强度测试、生物相容性及兔皮下埋植实验观察。方法采用纬编针织法制备蚕丝丝素纤维网状支架,进行机械强度测试。在网状支架上滴加I型胶原-蚕丝丝素溶液并冷冻干燥后,种植兔骨髓间充质干细胞(BMSCs)进行体外共培养,观察细胞与支架复合生长情况。另外,将蚕丝纤维网埋植于兔皮下3个月后,观察其组织相容性及力学性能变化。结果蚕丝纤维网状支架长2.5 cm×宽0.5 cm。支架的最大载荷、抗拉强度及弹性模量分别为(110.53±14.60)N、(41.88±5.51)MPa、(199.08±26.14)MPa。支架-BMSCs复合物培养2 d的扫描电镜观察显示:BMSCs黏附于支架呈立体生长,细胞呈梭形,增殖良好。蚕丝网埋植3个月后,组织相容性良好,可见有肌肉长入蚕丝网支架,产生胶原;并具有相当强的力学强度,蚕丝网的最大载荷、拉伸强度及弹性模量分别为(74.85±11.36)N、(28.84±4.39)MPa、(130.79±19.87)MPa。结论蚕丝网状支架具有良好的力学性能与生物相容性,是组织工程韧带/肌腱的良好材料。
        【Objective】To evaluate mechanical property, biocompatibility, and subcutaneous implantation of knitted silk mesh.【Methods】Firstly, a mesh-shaped silk scaffold was prepared by knitting silkworm silk fibroin fiber filament, and the biomechanical property of the silk mesh was measured. Secondly, after the silk meshes were filled with collagen Ⅰ-silk fibroin solution and freeze-dried, rabbit bone marrow-derived mesenchymal stem cells(BMSCs) were seeded on the surface of the meshes.The situation of cell growth, matrix formation, as well as the combination of cells and meshes was observed. Thirdly, after the silk meshes were implanted subcutaneous of rabbits for 3 months, their histocompatibility and mechanical properties were observed.【Results】The length and width of the mesh was about 2.5 cm×0.5 cm. The maximum load, tensile strength, and elastic modulus of the meshes were(110.53 ± 14.60) N,(41.88 ± 5.51) MPa, and(199.08 ± 26.14) MPa, respectively. Observation of scanning electron microscopy revealed that rabbit BMSCs grew and adhered well on the meshes. Most of the BMSCs showed spindle-shaped with good stretch, and secreted rich cell matrix on the meshes. After the silk meshes were implanted for 3 months, their histocompatibility was good and mechanical strength was rather strong, and the maximum load, tensile strength, and elastic modulus of the meshes were(74.85 ± 11.36) N,(28.84 ± 4.39) MPa, and(130.79 ± 19.87) MPa, respectively.【Conclusion】The mesh scaffold knitted by silk fibroin fibers has good biomechanical properties and biocompatibility. Therefore, it is of great potential for tissue engineered ligament and tendon.
引文
[1]Mandal BB,Grinberg A,Gil ES,et al.High-strength silk protein scaffolds for bone repair[J].Proc Natl Acad Sci USA,2012,109(20):7699-7704.
    [2]Bi F,Shi Z,Liu A,et al.Anterior cruciate ligament reconstruction in a rabbit model using silk-collagen scaffold and comparison with autograft[J].PLoS One,2015,10(5):e0125900.
    [3]Chen K,Sahoo S,He P,et al.A hybrid silk/RADA-based fibrous scaffold with triple hierarchy for ligament regeneration[J].Tissue Eng Part A,2012,18(13-14):1399-1409.
    [4]Xu W,Zhou F,Ouyang C,et al.Mechanical properties of smalldiameter polyurethane vascular grafts reinforced by weft-knitted tubular fabric[J].J Biomed Mater Res A,2010,92(1):1-8.
    [5]张文元,杨亚冬,房国坚,等.兔骨髓基质干细胞的分离生长及冻存技术研究[J].中国卫生检验杂志,2005,15(6):651-653.
    [6]张科技,张文元,杨亚冬,等.蚕丝-PLGA网状支架的力学强度检测及其与骨髓间充质干细胞共培养[J].中国卫生检验杂志,2014,24(23):3351-3353.
    [7]Teuschl A,Heimel P,Nürnberger S,et al.A novel silk fiberbased scaffold for regeneration of the anterior cruciate ligament:Histological results from a study in sheep[J].Am J Sports Med,2016,44(6):1547-1557.
    [8]Mandal BB,Kundu SC.Biospinning by silkworms:silk fiber matrices for tissue engineering applications[J].Acta Biomater,2010,6(2):360-371.
    [9]Agrawal P,Pramanik K,Biswas A,et al.In vitro cartilage construct generation from silk fibroin-chitosan porous scaffold and umbilical cord blood derived human mesenchymal stem cells in dynamic culture condition[J].J Biomed Mater Res A,2018,106(2):397-407.
    [10]Meng YH,Zhu XH,Yan LY,et al.Bone mesenchymal stem cells improve pregnancy outcome by inducing maternal tolerance to the allogeneic fetus in abortion-prone matings in mouse[J].Placenta,2016,47:29-36.
    [11]Guo Y,Chen Z,Wen J,et al.A simple semi-quantitative approach studying the in vivo degradation of regenerated silk fibroin scaffolds with different pore sizes[J].Mater Sci Eng CMater Biol Appl,2017,79:161-167.
    [12]Hu Y,Ran J,Zheng Z,et al.Exogenous stromal derived factor-1releasing silk scaffold combined with intra-articular injection of progenitor cells promotes bone-ligament-bone regeneration[J].Acta Biomater,2018,71:168-183.
    [13]左保齐,吴徵宇.再生丝素纤维的力学性能及其生物可降解特征[J].中国临床康复,2006,10(1):168-171.
    [14]Cao Y,Wang B.Biodegradation of silk biomaterials[J].Int J Mol Sci,2009,10(4):1514-1524.
    [15]李明忠,张剑,邱玉华,等.蚕丝丝素材料的生物降解[J].中国材料进展,2015,34(7-8):41-45.
    [16]Jao D,Mou X,Hu X.Tissue Regeneration:A Silk Road[J].JFunct Biomater,2016,7(3):E22.
    [17]Teuschl AH,van Griensven M,Redl H.Sericin removal from raw Bombyx mori silk scaffolds of high hierarchical order[J].Tissue Eng Part C Methods,2014,20(5):431-439.
    [18]Ma G,Zhao JL,Mao M,et al.Scaffold-based delivery of bone marrow mesenchymal stem cell sheet fragments enhances new bone formation in vivo[J].J Oral Maxillofac Surg,2017,75(1):92-104.
    [19]Zhang W,Yang Y,Zhang K,et al.Weft-knitted silkpoly(lactide-co-glycolide)mesh scaffold combined with collagen matrix and seeded with mesenchymal stem cells for rabbit Achilles tendon repair[J].Connective Tissue Research,2015,5(1):25-34.
    [20]Guo R,Gao L,Xu B.Current evidence of adult stem cells to enhance anterior cruciate ligament treatment:a systematic review of animal trials[J].Arthroscopy,2018,34(1):331-340.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700