GNSS掩星探测数据的f_0F_2和h_mF_2全球分布特征
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Global distribution characteristics of f_0F_2 and h_mF_2 based on GNSS occulation data
  • 作者:刘祎 ; 孙睿迪 ; 周晨 ; 赵庶凡 ; 张学民 ; 申旭辉 ; 赵正予
  • 英文作者:LIU Yi;SUN Ruidi;ZHOU Chen;ZHAO Shufan;ZHANG Xuemin;SHEN Xuhui;ZHAO Zhengyu;Department of Space Physics,Electronic Information School,Wuhan University;Institute of Earthquake Forecasting,China Earthquake Administration;The Institute of Crustal Dynamics,China Earthquake Administration;
  • 关键词:f0F2和h_mF_2周年变化 ; f0F2和h_mF_2日变化 ; f0F2和h_mF_2季节变化 ; 测高仪 ; GNSS
  • 英文关键词:annual variation of f0F2 and hmF2;;diurnal variation of f0F2 and hmF2;;seasonal variation of f0F2 and hmF2;;digisondes;;GNSS
  • 中文刊名:YGXB
  • 英文刊名:Journal of Remote Sensing
  • 机构:武汉大学电子信息学院电离层实验室;中国地震局地震预测研究所;中国地震局地壳应力研究所;
  • 出版日期:2018-12-25
  • 出版单位:遥感学报
  • 年:2018
  • 期:v.22
  • 基金:国家自然科学基金(编号:41774162,41574146);; 中国地震局地震预测研究所基本科研业务费(编号:2015IES010103)~~
  • 语种:中文;
  • 页:YGXB2018S1008
  • 页数:12
  • CN:S1
  • ISSN:11-3841/TP
  • 分类号:85-96
摘要
全球电离层分布特别是f_0F_2和h_mF_2对雷达探测、无线电通信以及卫星导航等有非常大的影响,为研究全球f_0F_2和h_mF_2的时空分布,利用全球导航卫星定位系统(GNSS)掩星数据统计分析了全球f_0F_2和h_mF_2的周年变化特性、日变化特性以及季节变化特性,并通过与日本地区测高仪站f_0F_2数据进行对比,分析了两种探测方式获取电离层参数的相关性。结果表明,全球f_0F_2和h_mF_2周年变化与太阳活动和地磁活动具有明显的正相关性,f_0F_2和h_mF_2还具有明显的空间分布特性。此外,全球f_0F_2和h_mF_2峰值出现在LT 14:00—16:00期间,且h_mF_2出现明显的日落后赤道电离异常复苏现象。全球f_0F_2具有比较明显的季节变化特性,f_0F_2峰值出现在春秋季中低纬地区,在夏冬季较小,且出现比较明显的冬季异常现象,而h_mF_2季节分布相比f_0F_2并不明显。通过和日本地区Wakkanai、Kokubunji、Yamagawa以及Okinawa测高仪站f_0F_2数据对比,发现两种探测手段获取的电离层参数具有较好的相关性。初步研究表明,全球f_0F_2和h_mF_2分布受到多种因素的影响,其中太阳活动和地磁活动占主要地位,其次是电场、热层风以及高能粒子沉降等。
        The ionosphere is an atmospheric region ionized by solar radiation, cosmic rays, and various particle radiations ranging from 60 km to 1000 km above the earth. Numerous free electrons and ions in the ionosphere can interfere with radio signals. Ionospheric parameters,especially F2 layer critical frequency(f_0F_2) and electron density peak height(h_mF_2), play an important role in the propagation of HF waves.Therefore, the study of f_0F_2 and h_mF_2, especially its global distribution, is important. The overall objective of this paper is to study the annual, diurnal, and seasonal variations of f_0F_2 and h_mF_2 in the world on the basis of GNSS occulation datasets and to compare the values f_0F_2 obtained by GNSS occultation and digisondes from all stations in Japan. COSMIC, GRACE, and CHAMP electron density profile datasets and digisonde datasets in Wakkanai, Kokubunji, Yamagawa, and Okinawa for 2002—2016 are selected as the data sources. The maximum electron density Nm F2 and h_mF_2 is obtained by using the electron density profile. Compared with ionosonde f_0F_2 datasets, the latitude and longitude of the selected Nm F2 are within 5 degrees of ionosondes, and the time of the selected Nm F2 is within 15 minutes of ionosondes. Results show that the annual variation of f_0F_2 and h_mF_2 has a significant positive correlation with solar activity and geomagnetic activity and significant spatial distribution characteristics. The maximum value of f_0F_2 distribution on both sides of the magnetic equator is approximately 15 degrees, and the maximum value of h_mF_2 distribution in the equatorial region and the northern and southern hemisphere peak heights is not symmetrical. In addition, the peak value of f_0F_2 and h_mF_2 appears during LT 14:00—16:00, and h_mF_2 exhibits significant equatorial ionization anomaly recovery after sunset. The f_0F_2 has obvious seasonal characteristics; the peak value of f_0F_2 appears in spring and autumn at middle and low latitudes, and is evident in abnormal winter phenomenon. However, the seasonal distribution of h_mF_2 evidently change. The values f_0F_2, which were obtained by occultation and digisondes from all stations in Japan, were compared, and results indicate that the ionospheric parameters obtained by the two detection methods have acceptable correlation. The correlation in the Okinawa station is the best, with a correlation coefficient of 0.88. The correlation in the Wakkanai station is poor, with a correlation coefficient of 0.75. The correlation between Yamagawa and Kokubunji stations is close at 0.84 and 0.85, respectively. The preliminary study shows that the global f_0F_2 and h_mF_2 distribution is affected by many factors, including solar activity, geomagnetic activity, electric field, and wind and high-energy particle sedimentation. The values f_0F_2 obtained by occultation and digisondes from all stations in Japan were compared, and results show that the ionospheric parameters obtained by the two detection methods have acceptable correlation. However, some evident differences were observed; these differences may be due to the electron density gradient and satellite retrieval technology.
引文
Amarante G M,Santamaría M C,De Gonázlez M M,Radicella S Mand Ezquer R.2004.Day-to-day changes in experimental electron density profiles and their implications to IRI model.Advances in Space Research,34(9):1878-1886[DOI:10.1016/j.asr.2004.08.008]
    Azpilicueta F,Altadill D,Brunini C,Torta J M and Blanch E.2015.Acomparison of the LPIM-COSMIC F2 peak parameters determinations against the IRI(CCIR).Advances in Space Research,55(8):2012-2019[DOI:10.1016/j.asr.2014.08.008]
    Balan N,Otsuka Y,Fukao S,Abdu M A and Bailey G J.2000.Annual variations of the ionosphere:a review based on MU radar observations.Advances in Space Research,25(1):153-162[DOI:10.1016/S0273-1177(99)00913-8]
    Chuo Y J,Lee C C,Chen W S and Reinisch B W.2011.Comparison between bottomside ionospheric profile parameters retrieved from FORMOSAT3 measurements and ground-based observations collected at Jicamarca.Journal of Atmospheric and Solar-Terrestrial Physics,73(13):1665-1673[DOI:10.1016/j.jastp.2011.02.021]
    Ely C V,Batista I S and Abdu M A.2012.Radio occultation electron density profiles from the FORMOSAT-3/COSMIC satellites over the Brazilian region:a comparison with Digisonde data.Advances in Space Research,49(11):1553-1562[DOI:10.1016/j.asr.2011.12.029]
    Ezquer R G,Mosert M,Corbella R,ErazùM,Radicella S M,Cabrera M and De La Zerda L.2004.Day-to-day variability of ionospheric characteristics in the American sector.Advances in Space Research,34(9):1887-1893[DOI:10.1016/j.asr.2004.03.016]
    Fejer B G and Scherliess L.2001.On the variability of equatorial F-region vertical plasma drifts.Journal of Atmospheric and Solar-Terrestrial Physics,63(9):893-897[DOI:10.1016/S1364-6826(00)00198-X]
    Forbes J M,Palo S E and Zhang X L.2000.Variability of the ionosphere.Journal of Atmospheric and Solar-Terrestrial Physics,62(8):685-693[DOI:10.1016/S1364-6826(00)00029-8]
    Hanson W B and Moffett R J.1966.Lonization transport effects in the equatorial F region.Journal of Geophysical Research,71(23):5559-5572[DOI:10.1029/JZ071i023p05559]
    Kouris S S and Fotiadis D N.2002.Ionospheric variability:a comparative statistical study.Advances in Space Research,29(6):977-985[DOI:10.1016/S0273-1177(02)00045-5]
    Krankowski A,Zakharenkova I,Krypiak-Gregorczyk A,Shagimuratov I I and Wielgosz P.2011.Ionospheric electron density observed by FORMOSAT-3/COSMIC over the European region and validated by ionosonde data.Journal of Geodesy,85(12):949-964[DOI:10.1007/s00190-011-0481-z]
    Lei J H,Syndergaard S,Burns A G,Solomon S C,Wang W B,Zeng Z,Roble R G,Wu Q,Kuo Y H,Holt J M,Zhang S R,Hysell D L,Rodrigues F S and Lin C H.2007.Comparison of COSMIC ionospheric measurements with ground-based observations and model predictions:preliminary results.Journal of Geophysical Research,112(A7):A07308[DOI:10.1029/2006JA012240]
    Liu Z D,Fang H X,Weng L B,Ma Q and Zhang J B.2016.Global model of ionospheric hm F2 based on CHAMPE,GRACE and COSMIC radio occultation.Chinese Journal of Geophysics,59(10):3555-3565(刘桢迪,方涵先,翁利斌,马强,张建彬.2016.基于CHAMP、GRACE和COSMIC掩星数据的全球电离层hm F2建模研究.地球物理学报,59(10):3555-3565)[DOI:10.6038/cjg20161003]
    Maruyama T,Ma G Y,Tsugawa T,Supnithi P and Komolmis T.2017.Ionospheric peak height at the magnetic equator:comparison between ionosonde measurements and IRI.Advances in Space Research,60(2):375-380[DOI:10.1016/j.asr.2016.10.013]
    McNamara L F and Thompson D C.2015.Validation of COSMIC values of f0F2 and M(3000)F2 using ground-based ionosondes.Advances in Space Research,55(1):163-169[DOI:10.1016/j.asr.2014.07.015]
    Mendillo M,Rishbeth H,Roble R G and Wroten J.2002.Modelling F2-layer seasonal trends and day-to-day variability driven by coupling with the lower atmosphere.Journal of Atmospheric and SolarTerrestrial Physics,64(18):1911-1931[DOI:10.1016/S1364-6826(02)00193-1]
    Pulinets S A.1998.Seismic activity as a source of the ionospheric variability.Advance in Space Research,22(6):903-906[DOI:10.1016/S0273-1177(98)00121-5]
    Pulinets S A and Liu J Y.2004.Ionospheric variability unrelated to solar and geomagnetic activity.Advance in Space Research,34(9):1926-1933[DOI:10.1016/j.asr.2004.06.014]
    Rishbeth H,Sedgemore-Schulthess K J F and Ulich T.2000.Semiannual and annual variations in the height of the ionospheric F2-peak.Annales Geophysicae,18(3):285-299[DOI:10.1007/s00585-000-0285-6]
    Rishbeth H and Mendillo M.2001.Patterns of F2-layer variability.Journal of Atmospheric and Solar-Terrestrial Physics,63(15):1661-1680[DOI:10.1016/S1364-6826(01)00036-0]
    Shen X H,Wu Y,Shan X J and Zhang J F.2008.The frame of China satellite seismic application system and the progress of China seismic electromagnetic program.Recent Developments in World Seismology(11):153(申旭辉,吴云,单新建,张景发.2008.中国卫星地震应用系统框架与地震电磁卫星计划进展.国际地震动态(11):153)[DOI:10.3969/j.issn.0253-4975.2008.11.154]
    Sun L F,Zhao B Q,Yue X A and Mao T.2014.Comparison between ionospheric character parameters retrieved from FORMOSAT3measurement and ionosonde observation over China.Chinese Journal of Geophysics,57(11):3625-3632(孙凌峰,赵必强,乐新安,毛田.2014.中国区域电离层垂测仪探测参量与COSMIC掩星反演结果比较研究.地球物理学报,57(11):3625-3632)[DOI:10.6038/cjg20141116]
    Suo Y C.1995.Seasonal Variation of f0F2.Chinese Journal of Radio Science,10(4):83-89(索玉成.1995.f0F2的季节变化特征.电波科学学报,10(4):83-89)[DOI:10.13443/j.cjors.1995.04.015]
    Titheridge J E and Buonsanto M J.1983.Annual variations in the electron content and height of the F layer in the northern and southern hemispheres,related to neutral composition.Journal of Atmospheric and Terrestrial Physics,45(10):683-696[DOI:10.1016/S0021-9169(83)80027-0]
    Xu S,Zhang B C,Liu R Y,Guo L X and Wu Y W.2014.Comparative studies on solar activity variations of Nm F2 at the arctic and Antarctic stations.Chinese Journal of Geophysics,57(11):3502-3511(徐盛,张北辰,刘瑞源,郭立新,武业文.2014.极区电离层F2层峰值电子浓度对太阳活动依赖性的共轭研究.地球物理学报,57(11):3502-3511)[DOI:10.6038/cjg20141102]
    Yonezawa T.1971.The solar-activity and latitudinal characteristics of the seasonal,non-seasonal and semi-annual variations in the peak electron densities of the F2-layer at noon and at midnight in middle and low latitudes.Journal of Atmospheric and Terrestrial Physics,33(6):889-907[DOI:10.1016/0021-9169(71)90089-4]
    Yu T,Wan W X,Liu L B and Zhao B Q.2004.Global scale annual and semi-annual variations of daytime Nm F2 in the high solar activity years.Journal of Atmospheric and Solar-Terrestrial Physics,66(18):1691-1701[DOI:10.1016/j.jastp.2003.09.018]
    Yu T,Wan W X,Liu L B,Mao T,Wang Y G and Wang J S.2008.Simulation of the Annual and Semi-annual Variation of F2 Region Ionosphere at Mid-and Low-latitudes.Science and Technology Review,26(19):25-30(余涛,万卫星,刘立波,毛田,王云冈,王劲松.2008.中低纬电离层F2区峰值参量周年和半年变化及电场影响模拟研究.科技导报,26(19):25-30)[DOI:10.3321/j.issn:1000-7857.2008.19.005]
    Zhang M L,Shi J K,Wang X and Radicella S M.2004.Ionospheric variability at low latitude station:Hainan,China.Advances in Space Research,34(9):1860-1868[DOI:10.1016/j.asr.2004.04.005]
    Zhang S R,Oliver W L and Fukao S.2001.MU radar ion drift model.Advances in Space Research,27(1):115-120[DOI:10.1016/S0273-1177(00)00146-0]
    Zou L,Rishbeth H,Müller-Wodarg I C F,Aylward A D,Millward GH,Fuller-Rowell T J,Idenden D W and Moffett R J.2000.Annual and semiannual variations in the ionospheric F2-layer.I.Modelling.Annales Geophysicae,18(8):927-944[DOI:10.1007/s00585-000-0927-8]

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700