用户名: 密码: 验证码:
黄芪幼苗对镉胁迫的生理响应机制
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Physiological Mechanisms in Astragalus membranaceus Seedlings Responding to Cadmium Stress
  • 作者:马月花 ; 郭晓瑞 ; 杨楠 ; 张野 ; 唐中华 ; 王洪政
  • 英文作者:MA Yue-Hua;GUO Xiao-Rui;YANG Nan;ZHANG Ye;TANG Zhong-Hua;WANG Hong-Zheng;The Key Laboratory of Forest Plant Ecology Ministry of Education,Northeast Forestry University;
  • 关键词:黄芪 ; 镉胁迫 ; 生长发育 ; 矿物营养元素 ; 次生代谢
  • 英文关键词:Astragalus membranaceus;;cadmium stress;;development;;mineral nutrition element;;secondary metabolism
  • 中文刊名:MBZW
  • 英文刊名:Bulletin of Botanical Research
  • 机构:东北林业大学森林植物生态学教育部重点实验室;
  • 出版日期:2019-07-15
  • 出版单位:植物研究
  • 年:2019
  • 期:v.39;No.191
  • 基金:中央高校基本科研业务费专项资金项目资助(2572018BU01);; 国家自然科学基金资助(31400337)~~
  • 语种:中文;
  • 页:MBZW201904003
  • 页数:8
  • CN:04
  • ISSN:23-1480/S
  • 分类号:19-26
摘要
以我国传统药用植物黄芪(Astragalus membranaceus(Fisch.) Bunge)幼苗为材料,在水培条件下系统研究了不同程度Cd胁迫对黄芪生长发育、矿质元素吸收转运以及次生代谢产物积累的影响。25~200μmol·L~(-1)Cd处理显著抑制了黄芪幼苗根系和地上部的生长并引起了植株MDA含量的显著升高以及新生叶片光合色素含量的降低,表明Cd处理对黄芪幼苗造成了较为明显的伤害。植株中吸收的Cd主要积累在黄芪幼苗根系,而运输到地上部的Cd积累规律为顶端<中部<基部,显示出黄芪幼苗可以通过对Cd的区域化降低其在地上部新生组织的积累。Cd处理降低了植株对多种矿质营养元素的吸收和转运,但是Ca和Mg却分别在地上部顶端和基部出现了明显的含量升高,推测其可能与降低Cd在新生组织的毒害作用以及提高老叶的Cd耐性有关。此外,根系中4种异黄酮物质的含量在Cd处理下明显升高,黄芪皂苷Ⅰ-Ⅳ的含量则被Cd处理所降低,暗示着异黄酮而非皂苷类物质在黄芪幼苗根系应对Cd胁迫中发挥了积极作用。
        The experiment was conducted to study the effects of different concentration Cd treatments on the growth,the adsorption and translocation of mineral elements,and the secondary metabolism of Astragalus membranaceus( Fisch.) Bunge( A. membranaceus),a traditional Chinese herb by employing a hydroponic system. The treatments of 25-200 μmol·L~(-1) Cd significantly inhibited the biomass growth and induced the increasing of malondialdehyde( MDA) content in whole plant and the decreasing of photosynthetic pigment contents in the new leaves,obviously exhibiting adverse effects. The Cd adsorbed by the plant dominantly accumulated in the roots. The greatest proportion of the shoots Cd was accumulated in its underpart,and orderly followed by the middle and the upper parts. It suggested that the seedlings took the advantage of Cd compartmentalization to minimize the adverse impact on the growing tissues of the shoots. Cd exposure hindered the adsorptions and translocations of a variety of mineral nutrition elements. However,the contents of Ca and Mg markedly enhanced by the Cd treatments in the upper and under shoots,respectively. We presumed that this might play positive roles in reducing the harms of Cd in the growing and old leaves. Furthermore,the contents of four isoflavonoids were elevated by the Cd treatments in roots of the seedlings. On the contrary,the contents of astragaloside Ⅰ-Ⅳ were depressed. It was implied that the isoflavonoids rather than astragalosides helped the seedlings of A. membranaceus to counteract Cd stress in their roots.
引文
1. Liu J G,Li K Q,Xu J K,et al. Interaction of Cd and five mineral nutrients for uptake and accumulation in different rice cultivars and genotypes[J]. Field Crops Research,2003,83(3):271-281.
    2 .中华人民共和国环境保护部,国土资源部.全国土壤污染状况调查公报[R].北京:环境保护部,国土资源部,2014.Ministry of Environmental Protection of the P. R. C,Ministry of Land and Resources. National survey bulletin on soil pollution status[R]. Beijing:Ministry of Environmental Protection,Ministry of Land and Resources,2014.
    3 .郭智,黄苏珍,原海燕. Cd胁迫对马蔺和鸢尾幼苗生长、Cd积累及微量元素吸收的影响[J].生态环境,2008,17(2):651-656.Guo Z,Huang S Z,Yuan H Y. Effects of Cd stress on the development,Cd accumulation and microelements absorption of two species of Iris[J]. Ecology and Environment,2008,17(2):651-656.
    4 . Seregin I V,Ivanov V B. Physiological aspects of cadmium and lead toxic effects on higher plants[J]. Russian Journal of Plant Physiology,2001,48(4):523-544.
    5 .陈瑛,李廷强,杨肖娥.镉对不同基因型小白菜根系生长特性的影响[J].植物营养与肥料学报,2009,15(1):170-176.Chen Y,Li T Q,Yang X E. Effects of Cd on growth characteristics of root systems of pakchoi with different genotypes[J]. Plant Nutrition and Fertilizer Science,2009,15(1):170-176.
    6 .杨居荣,黄翌.植物对重金属的耐性机理[J].生态学杂志,1994,13(6):20-26.Yang J R,Huang Y. Mechanism of heavy metal tolerance of plants[J]. Chinese Journal of Ecology,1994,13(6):20-26.
    7 .江行玉,赵可夫.植物重金属伤害及其抗性机理[J].应用与环境生物学报,2001,7(1):92-99.Jiang X Y,Zhao K F. Mechanism of heavy metal injury and resistance of plants[J]. Chinese Journal of Applied and Environmental Biology,2001,7(1):92-99.
    8 . De Knecht J A,Koevoets P L M,Verkleij J A C,et al. Evidence against a role for phytochelatins in naturally selected increased cadmium tolerance in Silene vulgaris(Moench)Garcke[J]. New Phytologist,1992,122(4):681-688.
    9 . Reeves R D,Brooks R R. Hyperaccumulation of lead and zinc by two metallophytes from mining areas of central Europe[J]. Environmental Pollution Series A,Ecological and Biological,1983,31(4):277-285.
    10 .常学秀,段昌群,王焕校.根分泌作用与植物对金属毒害的抗性[J].应用生态学报,2000,11(2):315-320.Chang X X,Duan C Q,Wang H X. Root excretion and plant resistance to metal toxicity[J]. Chinese Journal of Applied Ecology,2000,11(2):315-320.
    11 . Wang X,Liu Y G,Zeng G M,et al. Subcellular distribution and chemical forms of cadmium in Bechmeria nivea(L.)Gaud.[J]. Environmental and Experimental Botany,2008,62(3):389-395.
    12 . Ebbs S,Lau I,Ahner B,et al. Phytochelatin synthesis is not responsible for Cd tolerance in the Zn/Cd hyperaccumulator Thlaspi caerulescens(J.&C. Presl)[J]. Planta,2002,214(4):635-640.
    13 .张庆芝,吴晓俊,刘涤,等.影响黄芪有效成分含量的因子的研究[J].中草药,2002,33(4):314-315.Zhang Q Z,Wu X J,Liu D,et al. Studies on influencing factors of contents of active compound in Radix astragali[J]. Chinese Traditional and Herbal Drugs,2002,33(4):314-315.
    14 .赵蓉.我国8种中药材重金属污染的系统评价[D].北京:北京中医药大学,2016.Zhao R. Systematic evaluation of heavy metal pollution in 8kinds of Chinese herbals in China[D]. Beijing:Beijing University of Chinese Medicine,2016.
    15 .张宪政.作物生理研究法[M].北京:农业出版社,1992.Zhang X Z. Crop physiology research method[M]. Beijing:China Agriculture Press,1992.
    16 . Heath R L,Packer L. Photoperoxidation in isolated chloroplast:Ⅰ. Kinetics and stoichiometry of fatty acid peroxidation[J]. Archives of Biochemistry and Biophysics,1968,125(1):189-198.
    17 .杨楠,王曦,郭晓瑞,等.黄芪种子萌发及萌发后生长过程中黄酮类化合物合成的动态变化[J].植物研究,2018,38(2):298-305.Yang N,Wang X,Guo X R,et al. Variation in flavonoids biosynthesis during seed germination and post-germination growth in Astragalus membranaceus[J]. Bulletin of Botanical Research,2018,38(2):298-305.
    18 . Sanità Di Toppi L,Gabbrielli R. Response to cadmium in higher plants[J]. Environmental and Experimental Botany,1999,41(2):105-130.
    19 . Van Assche F,Clijsters H. Effects of metals on enzyme activity in plants[J]. Plant,Cell&Environment,1990,13(3):195-206.
    20 .俞萍,高凡,刘杰,等.镉对植物生长的影响和植物耐镉机制研究进展[J].中国农学通报,2017,33(11):89-95.Yu P,Gao F,Liu J,et al. Effect of Cd on plant growth and its tolerance mechanism[J]. Chinese Agricultural Science Bulletin,2017,33(11):89-95.
    21 .曹莹,李建东,赵天宏,等.镉胁迫对玉米生理生化特性的影响[J].农业环境科学学报,2007,26(S1):8-11.Cao Y,Li J D,Zhao T H,et al. Effects of Cd stress on physiological and biochemical Traits of Maize[J]. Journal of Agro-Environment Science,2007,26(S1):8-11.
    22 .陈京都,何理,许轲,等.镉胁迫对不同基因型水稻生长及矿质营养元素吸收的影响[J].生态学杂志,2013,32(12):3219-3225.Chen J D,He L,Xu K,et al. Growth and nutritional element absorption of different rice genotypes under cadmium stress[J]. Chinese Journal of Ecology,2013,32(12):3219-3225.
    23 . Perfus-Barbeoch L,Leonhardt N,Vavasseur A,et al. Heavy metal toxicity:Cadmium permeates through calcium channels and disturbs the plant water status[J]. The Plant Journal,2002,32(4):539-548.
    24 . Verbruggen N,Hermans C,Schat H. Mechanisms to cope with arsenic or cadmium excess in plants[J]. Current Opinion in Plant Biology,2009,12(3):364-372.
    25 . Gussarsson M,Asp H,Adalsteinsson S,et al. Enhancement of cadmium effects on growth and nutrient composition of birch(Betula pendula)by buthionine sulphoximine(BSO)[J]. Journal of Experimental Botany,1996,47(2):211-215.
    26 . Flores-Cáceres M L,Hattab S,Hattab S,et al. Specific mechanisms of tolerance to copper and cadmium are compromised by a limited concentration of glutathione in alfalfa plants[J]. Plant Science,2015,233:165-173.
    27 . Uraguchi S,Kiyono M,Sakamoto T,et al. Contributions of apoplasmic cadmium accumulation,antioxidative enzymes and induction of phytochelatins in cadmium tolerance of the cadmium-accumulating cultivar of black oat(Avena strigosa Schreb.)[J]. Planta,2009,230(2):267-276.
    28 .李涛,李光照,梅馨月,等.镉—钙交互作用对植物的生态学效应[J].中国农学通报,2017,33(32):77-80.Li T,Li G Z,Mei X Y,et al. The interaction of cadmium and calcium and its ecological effects on plants[J]. Chinese Agricultural Science Bulletin,2017,33(32):77-80.
    29 . Singh V,Tripathi B N,Sharma V. Interaction of Mg with heavy metals(Cu,Cd)in T. aestivum with special reference to oxidative and proline metabolism[J]. Journal of Plant Research,2016,129(3):487-497.
    30 . Naoumkina M,Farag M A,Sumner L W,et al. Different mechanisms for phytoalexin induction by pathogen and wound signals in Medicago truncatula[J]. Proceedings of the National Academy of Sciences of the United States of America,2007,104(46):17909-17915.
    31 .郑灵芝,李素霞,袁勤生.大豆异黄酮抗氧化性质的研究[J].食品与药品,2006,8(2):48-50.Zheng L Z,Li S X,Yuan Q S. Study on the antioxygenation of soybean isoflavone[J]. Food and Drug,2006,8(2):48-50.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700