清洁油品升级背景下加氢脱硫技术研究进展
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Review of hydrodesulfurization technology based on the upgrading requirement of clean gasoline
  • 作者:董立霞 ; 夏步田 ; 罗凯威 ; 赵亮 ; 高金森 ; 郝天臻
  • 英文作者:DONG Lixia;XIA Butian;LUO Kaiwei;ZHAO Liang;GAO Jinsen;HAO Tianzhen;State Key Laboratory of Heavy Oil Processing, China University of Petroleum,Beijing;Hebei Refining Technologies Company Limited;
  • 关键词:清洁汽油 ; 加氢脱硫 ; 溶剂萃取 ; 烯烃
  • 英文关键词:clean gasoline;;hydrodesulfurization;;extractive servant;;olefin
  • 中文刊名:HGJZ
  • 英文刊名:Chemical Industry and Engineering Progress
  • 机构:中国石油大学(北京)重质油国家重点实验室;河北精致科技有限公司;
  • 出版日期:2019-01-05
  • 出版单位:化工进展
  • 年:2019
  • 期:v.38;No.328
  • 基金:国家自然科学基金(21336011,21476260,21236009,U1162204)
  • 语种:中文;
  • 页:HGJZ201901019
  • 页数:9
  • CN:01
  • ISSN:11-1954/TQ
  • 分类号:215-223
摘要
为满足"史上最严"的国Ⅵ汽油质量标准,发展"低硫、控烯、保辛烷值"的清洁汽油生产新技术成为当前研究热点。当前清洁汽油生产的主流技术是选择性催化加氢脱硫技术,本文首先从催化裂化(FCC)汽油中汽油辛烷值损失与汽油中不同碳数和结构烯烃加氢饱和规律的研究开始,详细分析了当前国Ⅵ升级背景下的加氢脱硫技术发展现状,特别针对提高加氢脱硫催化剂脱硫选择性及辛烷值恢复性能的研究进展进行了综述。基于现有的炼油发展现状及难题,建议了未来清洁油品的发展方向:秉承"分子炼油"理念,进一步完善分子层次的汽油组成认知,不断实现汽油组成中各类烃的精准分离和高效转化,可满足清洁油品的升级需求,还可应对未来油品结构调整。
        To meet the"strictest in history"national Ⅵ gasoline quality standards, the development of low sulfur, olefin, and octane number clean gasoline production technology has become a hot researchtopic. The mainstream technology of clean gasoline production is selective hydrodesulfurizationtechnology. This article expounded the research on the relationship between the octane number loss ofFCC gasoline and the hydrogenation saturation law of olefins with different carbon numbers and structuresin FCC gasoline. And the status of hydrodesulfurization technology under the background of Ⅵ upgradingin China was also analyzed in detail. The research progress of the hydrodesulfurization catalysts about thedesulfurization selectivity and octane number recovery performance was reviewed. Based on the currentstatus and problems of refinery development, the future development of the clean oil was suggested.Adhering to the concept of "molecular refining", the knowledges of the gasoline composition need to be improved so the continuous separation and efficient conversion of various hydrocarbons in gasoline composition will be realized, which can meet the upgrading requirements of clean oil products and the structural adjustment of future oil products.
引文
[1]中华人民共和国国家质量监督检验检疫总局,环境保护部.轻型汽车污染物排放限值及测量方法:GB18352.6—2016[S].北京:中国标准出版社,2016.General Administration of Quality Supervision,Inspection andQuarantine of the People's Republic of China,Ministry of Ecologyand Environment of the People's Republic of China. Limits andmeasurement methods for emissions from light-duty vehicles(CHINA 6):GB18352.6—2016[S]. Beijing:Standards Press ofChina,2016.
    [2]中华人民共和国国家质量监督检验检疫总局,环境保护部.车用汽油有害物质控制标准(第四、五阶段):GWKB1.1—2011[S].北京:中国标准出版社,2011.General Administration of Quality Supervision,Inspection andQuarantine of the People's Republic of China,Ministry of Ecologyand Environment of the People's Republic of China. Hazardousmaterials control standard for motor vehicle gasoline(Ⅳ,Ⅴ):GWKB1.1—2011[S]. Beijing:Standards Press of China, 2011.
    [3]申兴海. FCC汽油萃取蒸馏脱硫制取欧Ⅳ清洁汽油的研究[D].上海:华东理工大学, 2011.SHEN X H. Removing sulfur Compounds from fluid catalyticcracking gasoline by extractive distillation for producing EuropeⅣgasoline[D]. Shanghai:East China University of Science andTechnology, 2011.
    [4]娄永峰.满足国Ⅴ汽油标准的汽油加氢脱硫工艺最新进展[J].山东化工, 2016, 45(18):38-43.LOU Y F. Latest advances of gasoline hydrodesulfurizationprocess for gasoline meeting National StandardⅤ[J]. ShandongChemical Industry, 2016, 45(18):38-43.
    [5] BACO F, DEBUISSCHE Q, MARCHAL N. Prime G+processdesulfurization of FCC gasoline with minimized octane loss[C]//Proceedings of the Fifth International Conference on RefineryProcessing, AIChE 2002 Spring National Meeting. March11-14,New Orleans, LA. 2002.
    [6] BRIGNAC B G. The SCAN fining hydrotreatment process[J].World Refining, 2000, 10(7):14-18.
    [7] GARDNER R, EA SCHWARZ K R. Start-up of the first CDHydro/CDHDS Unit at Irving Oil's Saint John, New Brunswick Refinery[C]//NPRA Annual Meeting. 2001.
    [8]高晓东,张登前,李明丰,等.满足国Ⅴ汽油标准的RSDS-Ⅲ技术的开发及应用[J].石油学报(石油加工), 2015, 31(2):482-486.GAO X D, ZHANG D Q, LI M F, et al. Development andapplication of RSDS-Ⅲtechnology for NationalⅤgasolineproduction[J]. Acta Petrolei Sinica(Petroleum Processing Section),2015, 31(2):482-486.
    [9] SHIH S S, OWENS P, PALIT J. Mobil's OCTGAIN Proeess:FCCgasoline desulfurization reaches a new Performance level[C]//NPRA Annual Meeting, San Antonio,Texas. 1999.
    [10]李明丰,夏国富,褚阳,等.催化裂化汽油选择性加氢脱硫催化剂RSDS-1的开发[J].石油炼制与化工, 2003,34(7):1-4.LI M F, XIA G F, ZHU Y, et al. Preparation of selectivehydrodesulfurization catalyst RSDS-I for naphtha[J]. PetroleumProcessing and Petrochemicals, 2003,34(7):1-4.
    [11]石冈,范煜,鲍晓军,等.催化裂化汽油加氢改质GARDES技术的开发及工业试验[J].石油炼制与化工, 2013, 44(9):66-72.SHI G, FAN Y, BAO X J, et al. Development and application ofGARDES technology for fluid catalytic cracking gasoline hydro-upgrading[J]. Petroleum Processing and Petrochemicals, 2013, 44(9):66-72.
    [12]接瑜.催化汽油加氢脱硫装置国Ⅴ升级改造设计[J].石油与天然气化工, 2017(4):11-15.JIE Y. Revamp design of the FCC gasoline hydrodesulfurizationunit to upgrade to NationalⅤgasoline[J]. Chemical Engineering ofOil&Gas, 2017(4):11-15.
    [13]乔景辉,李程飞,周雪梅.吉化Prime G+装置国Ⅴ质量升级技术方案及运行分析[J].化工科技, 2017, 25(6):62-66.QIAO J H, LI C F, ZHOU X M. Technical scheme and operationanalysis of ChinaⅤquality upgrading of Jilin PetrochemicalPrime G+unit[J]. Science&Technology in Chemical Industry,2017, 25(6):62-66.
    [14]李志超,肖立刚,张晓光,等.燃料型炼油厂国Ⅵ汽油升级路线分析[J].炼油技术与工程, 2017(6):40-43.LI Z C, XIAO L G, ZHANG X G, et al. Analysis of upgradingprocess for GuoⅥgasoline for fuel-type refinery[J]. PetroleumRefinery Engineering, 2017(6):40-43.
    [15]曹湘洪.面向未来,我国生产汽油的技术路线选择[J].石油炼制与化工, 2012, 43(8):1-6.CAO X H. The choice of china`s gasoline production process routefor the future[J]. Petroleum Processing and Petrochemicals, 2012,43(8):1-6.
    [16] Gilbert W. Formation of thiophenic species in FCC gasoline fromH2S generating sulfur sources in FCC conditions[J]. Fuel, 2014,121:65-71.
    [17]魏秀萍,贾黎黎,赵运芳.催化裂化汽油中含硫化物类型及分布规律[J].精细石油化工, 2013(6):70-74.WEI X P, JIA L L, ZHAO Y F. Type and distribution patterns ofsulfur compounds in fluid catalytic cracking gasoline[J]. SpecialtyPetrochemicals, 2013(6):70-74.
    [18] LEFLAIVE P, LEMBERTON J, PEROT G, et al. On the origin ofsulfur impurities in fluid catalytic cracking gasoline:reactivity ofthiophene derivatives and of their possible precursors under FCCconditions[J]. Applied Catalysis A:General, 2002, 227(1):201-215.
    [19] CIS R, JHOSN J, GODOY J, et al. Characterization of Tungsten-modified ultrastable Y zeolite catalysts and their activity inthiophene hydrodesulfurization[J]. Journal of Catalysis, 1993, 141:206-218.
    [20]邢金仙,刘晨光.催化裂化汽油中硫和族组成及硫化物类型的馏分分布[J].炼油技术与工程, 2003(6):6-9.XING J X, LIU C G. Distribution of sulfur, group composition andtypes of sulfur compounds in FCC naphtha[J]. Petroleum RefineryEngineering, 2003(6):6-9.
    [21]李凤琪,全瀛寰,朱凌辉,等.哈油FCC汽油硫及烯烃含量分布特征研究[J].炼油技术与工程, 2015(7):18-20.LI F Q, QUAN Y H, ZHU L H, et al. Study on sulfur and olefindistribution of FCC gasoline from Kazakhstan crude oil[J].Petroleum Refinery Engineering, 2015(7):18-20.
    [22]朱全力,赵旭涛,赵振兴,等.加氢脱硫催化剂与反应机理的研究进展[J].分子催化, 2006(4):372-383.ZHU Q L, ZHAO X T, ZHAO Z X, et al. Research progress onhydrodesulfurization catalyst and reaction mechanism[J]. Journalof Molecular Catalysis, 2006(4):372-383.
    [23]蔡目荣,丁福臣,李术元. FCC汽油烯烃的生成机理与影响因素[J].石油与天然气化工, 2003(2):92-94.CAI M R, DING F C, LI S Y. Formation mechanism andinfluencing factors of FCC gasoline olefins[J]. ChemicalEngineering of Oil and Gas, 2003(2):92-94.
    [24]赵悦,李振兵,王忠,等.催化裂化汽油在加氢脱硫过程中烯烃饱和研究[J].当代化工, 2016(9):2113-2115.ZHAO Y, LI Z B, WANG Z, et al. Study on olefin saturation ofFCC gasoline during hydrodesulfurization[J]. ContemporaryChemical Industry, 2016(9):2113-2115.
    [25]樊莲莲,高晓冬,习远兵. FCC汽油选择性加氢脱硫过程中烃类组成与辛烷值损失的关系[J].石油炼制与化工, 2010, 41(9):70-73.FAN L L, GAO X D, XI Y B. Study on the relation betweenhydrocarbon group compositions and octane loss during selectivehydrodesulfurization of FCC naphtha[J]. Petroleum Processing andPetrochemicals, 2010, 41(9):70-73.
    [26]习远兵,高晓冬,李明丰,等.催化裂化汽油选择性加氢脱硫过程中烯烃加氢饱和反应动力学研究[J].石油炼制与化工, 2011,42(9):9-12.XI Y B, GAO X D, LI M F, et al. Study on olefin hydrogenationsaturation reaction kinetics during selective hydrodesulfurizationof FCC gasoline[J]. Petroleum Processing and Petrochemicals,2011, 42(9):9-12.
    [27] KIRGINA M, IVANCHINA E, D0LGANOV I, et al. Computerprogram for optimizing compounding of high-octane gasoline[J].Chemistry and Technology of Fuels and Oils, 2014, 50(1):17-27.
    [28] MAYLIN M, KIRGINA M, SVIRIDOVA E, et al. Calculation ofgasoline octane numbers taking into account the reactioninteraction of blend components[J]. Procedia Chemistry, 2014,10:477-484.
    [29] ALBAHRI T. Structural group contribution method for predictingthe octane number of pure hydrocarbon liquids[J]. Ind. Eng.Chem. Res., 2003, 42:657-662.
    [30] MEUSINGER R, MOROS R. Determination of octane numbers ofgasoline compounds from their chemical structure by13C NMRspectroscopy and neural networks[J]. Fuel, 2001, 80(5):613-621.
    [31] DONG L X, LUO K, ZHAO L, et al. Quantitative relationshipbetween olefin saturation and octane loss during HDS process:aninsight from molecular structure to experimental activity[J].Chemical Engineering Science, 2018, 191:183-190.
    [32]董立霞. FCC汽油加氢脱硫过程中烯烃饱和与辛烷值损失规律的研究[D].北京:中国石油大学(北京), 2017.DONG L X. Study on olefin saturation and octane loss during FCCgasoline hydrodesulfurization[D]. Beijing:China University ofPetroleum(Beijing), 2017.
    [33]孙万堂.助剂改性钴钼加氢脱硫催化剂制备过程研究[D].青岛:青岛科技大学, 2016.SUN W T. Preparation of cobalt-molybdenum hydrodesulfurizationcatalyst with additives[D]. Qingdao:Qingdao University of Scienceand Technology, 2016.
    [34] ISHUTENKO D, NIKULSHIN P, PIMERZIN A. Relation betweencomposition and morphology of K(Co)MoS active phase speciesand their performances in hydrotreating of model FCC gasoline[J].Catalysis Today, 2016, 271:16-27.
    [35]王猛.全馏分FCC汽油低温选择性加氢脱硫催化剂的研究[D].大连:大连理工大学, 2011.WANG M. Study on low temperature selective hydrodesulfurizationcatalyst for FCC gasoline[J]. Dalian:Dalian University ofTechnology, 2011.
    [36] NIKULSHIN P, ISHUTENKO D, M0ZHAEV A, et al. Effects ofcomposition and morphology of active phase of CoMo/Al2O3catalystsprepared using Co2Mo10-heteropolyacid and chelating agents ontheir catalytic properties in HDS and HYD reactions[J]. Journal ofCatalysis, 2014, 312:152-169.
    [37] DAAGE M, CHIANELLI R. Structure-function relations inmolybdenum sulfide catalysts:the"Rim-Edge"model[J]. Journalof Catalys, 1994, 149(2):414-427.
    [38] CLAUSEN B. Importance of Co-Mo-S type structures inhydrodesulfurization[J]. CatalysisReviews, 1984, 26(3/4):395-420.
    [39] TRAKARNPRUK W, SEENTRAKOON B, TRAKARNPRUK B,et al. Hydrodesulfurization activity of MoS2and bimetalliccatalysts prepared by in situ decomposition of thiophene[J].Silpakorn University Science&Technology Journal, 2007, 47(7):1874-1882.
    [40] HENSEN M, KOOYMAN J, MEER D, et al. The relation betweenmorphology and hydrotreating activity for supported MoS2,particles[J]. Journal of Catalysis, 2001, 199(2):224-235.
    [41] LI M, LI H, JIANG F, et al. The relation between morphology of(Co)MoS2phases and selective hydrodesulfurization for CoMocatalysts[J]. Catalysis Today, 2010, 149:35-39.
    [42] PIMERZIN A, MOZHAEV A, VARAKIO A, et al. Comparison ofcitric acid and glycol effects on the state of active phase speciesand catalytic properties of CoPMo/Al2O3hydrotreating catalysts[J].Applied Catalysis B:Environmental, 2017, 205:93-103.
    [43] RASHIDI F, KHARAT N, RASHIDI M, et al. Fractal geometryapproach to describe mesostructured boehmite and gamma-alumina nanorods[J]. European Journal of Inorganic Chemistry,2010(10):1544-1551.
    [44] FAN Y, LIN X, SHI G, et al. Realumination of dealuminatedHZSM-5 zeolite by citric acid treatment and its application inpreparing FCC gasoline hydro-upgrading catalyst[J]. Micropor.Mesopor. Mat., 2007, 98:174-181.
    [45]孔飞飞,王海彦,项洪涛,等. ZSM-5催化剂加氢脱硫及烯烃芳构化反应研究[J].石油炼制与化工, 2016, 47(3):60-66.KONG F F, WANG H Y, XIANG H T, et al. ZSM-5 zeolitemodified by alkali treatment and study on the hydrodesulfurizationand aromatization[J]. Petroleum Processing and Petrochemicals,2016, 47(3):60-66.
    [46]王智峰.催化裂化汽油芳构化生产清洁油品的技术研究[D].天津:天津大学, 2008.WANG Z F. Study on aromatization of FCC gasoline for clean oilproduction[D]. Tianjin:Tianjin University, 2008.
    [47] NADEINA K, KLIMOV O, DANILOVA I, et al. Amorphous silica-alumina-perspective supports for selective hydrotreating of FCCgasoline:Influence of Mg[J]. Applied Catalysis B:Environmental,2018, 223:22-35.
    [48]刘磊,吴新民.加氢脱硫催化剂载体和活性组分的研究进展[J].工业催化, 2008, 16(8):1-7.LIU L, WU X M. Latest researches in the supports and activecomponent of HDS catalyst[J]. Industrial Catalysis, 2008, 16(8):1-7.
    [49] ZHANG Y, WANG Y, CHEN F, et al. Research on a dual solventto separate olefin/aromatic-sulfide from heavy fluid catalyticcracking naphtha[J]. Energy&Fuels, 2018, 32(3):4057-4064.
    [50]张宇豪,王永涛,陈丰,等.清洁油品生产中溶剂萃取分离技术的研究进展[J].中国科学(化学), 2018(4):319-328.ZHANG Y H, WANG Y T, CHEN F, et al. Development of solventextraction separation process for clean oil production[J]. ScientiaSinica Chimica, 2018(4):319-328.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700