一种基于有限元法的超高压输电线路三维电场计算方法
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Three-dimensional electric field calculation method for EHV transmission line based on finite element method
  • 作者:汪茹 ; 田瑾 ; 吴飞 ; 程凯 ; 张振华
  • 英文作者:Wang Ru;Tian Jin;Wu Fei;Cheng Kai;Zhang Zhenhua;College of Electronic and Electrical Engineering,Shanghai University Of Engineering Science;
  • 关键词:超高压输电线路 ; 有限元法 ; 线路弧垂 ; 地形起伏
  • 英文关键词:extra-high voltage transmission lines;;finite element method;;the wire sag;;topographic relief
  • 中文刊名:DZIY
  • 英文刊名:Journal of Electronic Measurement and Instrumentation
  • 机构:上海工程技术大学电子电气工程学院;
  • 出版日期:2019-04-15
  • 出版单位:电子测量与仪器学报
  • 年:2019
  • 期:v.33;No.220
  • 基金:上海市科学技术委员会(15ZR1418900);; 国家自然科学基金(61272097);; 上海市科技委员会重点项目(18511101600)资助
  • 语种:中文;
  • 页:DZIY201904015
  • 页数:8
  • CN:04
  • ISSN:11-2488/TN
  • 分类号:108-115
摘要
为了探讨基于有限元法(FEM)的输电线路附近电场的三维分布特点,引入输电线路弧垂方程建立三维模型,计算松江洞泗线上500 k V等级的超高压输电线路的三维电场分布,并与模拟电荷法进行比对,验证了该计算方法的有效性;研究分析了相导线布置方式、分裂导线尺寸、地形起伏等因素对空间电场强度和分布特征的影响;最后,将计算结果与多组实际测量结果进行对比,其电场强度变化趋势相近、分布特征一致,比二维模型计算结果与实际测量值的偏差从60. 94%缩小至9. 58%。为有限元法在输电线路附近三维空间电场的计算研究提供了重要的理论基础,并对工频电场计算和输电线路选址具有重要意义。
        In order to discuss the three-dimensional distribution characteristics of electric fields near transmission lines based on the finite element method( FEM),a three-dimensional calculation model and the sag equation of transmission lines is established. The 3 D electric field distribution of extra-high voltage transmission lines of 500 k V named Dongsi Line is calculated by 3 D calculation model. Then the results of comparison between FEM and charge simulating method verify effectiveness of the 3 D calculation method. Furthermore,the influence of the factors such as the arrangement mode of phase traverse,the size of split traverse and topographic relief on the spatial electric field strength and distribution characteristics are calculated and analyzed. It's the result of comparison between the calculation values and the measurement values that the variation trend of electric field intensity was similar and the distribution features were consistent. The results show that the deviation from the actual value is greatly reduced from 60. 94% to 9. 58%,which compared with the calculation results of the two-dimensional model. The calculation method in this paper provides an important theoretical basis for the calculation of three-dimensional electric field near the transmission line based on FEM and is of great significance for the calculation of power-frequency electric field and the location of transmission line.
引文
[1]郑亚利,俞集辉,汪泉弟,等.电晕放电对超高压输电线路工频电场的影响[J].高电压技术,2009,35(4):872-876.ZHENG Y L,YU J H,WANG Q D,et al.Impact of corona discharge on the power frequency electric field intensity in the extra-high voltage transmission lines[J].High Voltage Engineering,2009,35(4):872-876.
    [2]邹岸新,李永明,王洋洋,等.表面电荷法在复杂地势下超高压输电线路的工频电场计算[J].电工电能新技术,2017,36(3):51-57.ZOU AN X,LI Y M,WANG Y Y,et al.Powerfrequency electric field calculation of extra high voltage transmission line based on surface[J].Advanced Technology of Electrical Engineering and Energy,2017,36(3):51-57.
    [3]潘茜雯,罗日成,唐祥盛,等.500 k V同塔双回紧凑型输电线路电磁环境分析[J].高压电器,2017,53(11):0183-0190.PAN Q W,LUO R CH,TANG X SH,et al.Analysis on electromagnetic environment of 500 k V compact transmission line with double circuits on the same tower[J].High Voltage Apparatus,2017,53(11):0183-0190.
    [4]甘艳,阮江军,邬熊.有限元法分析高压架空线路附近电场分布[J].高电压技术,2006,32(8):52-55.GAN Y,RUAN J J,WU X.Analysis of the electric field intensity nearby high voltage transmission line by FEM[J].High Voltage Engineering,2006,32(8):52-55.
    [5]王珍雪,马力,叶会英,等.模拟电荷法在UHVDC输电线路中的优化及应用[J].高压电器,2016,52(1):15-20.WANG ZH X,MA L,YE H Y,et al.Optimization and application of charge simulation method for UHVDCtransmission lines[J].High Voltage Apparatus,2016,52(1):15-20.
    [6]陈楠,文习山,蓝磊,等.基于电场逆运算的输电导线弧垂计算方法[J].中国电机工程学报,2011,31(16):121-127.CHEN N,WEN X SH,LAN L,et al.Novel algorithm for transmission line sag calculation based on electrical field invert arithmetic[J].Proceedings of the CSEE,2011,31(16):121-127.
    [7]李慧慧,杜志叶,甘艳,等.超高压线路下方畸变电场测量与计算研究[J].电工电能新技术,2015,34(8):75-80.LI H H,DU ZH Y,GAN Y,et al.Measurement and calculation of distortion electric field under ultrahigh voltage line[J].Advanced Technology of Electrical Engineering and Energy,2015,34(8):75-80.
    [8]俞集辉,刘艳,张淮清,等.超高压输电线下建筑物临近区域电场计算[J].中国电力,2010,43(7):34-37.YU J H,LIU Y,ZHANG H Q,et al.Electric field calculation nearby building under EHV transmission line[J].Electric Power,2018,43(7):34-37.
    [9]李永明,邹岸新,徐禄文,等.特高压直流输电线路离子流场的有限元-积分法计算[J].高电压技术,2012,38(6):1428-1434.LI Y M,ZOU AN X,XU L W,et al.Calculation on corona ionized field of UHVDC transmission lines by finite element-integral method[J].High Voltage Engineering,2012,38(6):1428-1434.
    [10]彭湃,程汉湘,陈杏灿,等.基于有限元的超高压输电线路电场的数值分析与测量[J].电测与仪表,2016,53(3):56-61.PENG P,CHENG H X,CHEN X C,et al.Numerical analysis and measurement of the electric field of EHVtransmission lines based on finite element[J].Electrical Measurement and Instrumentation,2012,53(3):56-61.
    [11]宋福根,林韩,兰生.利用无人机对特高压线路上方电场强度实测[J].仪器与仪表学报,2016,37(12):2836-2843.SONG F G,LIN H,LAN SH.Test research of the electric field intensity in the upper space of UHV ACtransmission line using UAV[J].Chinese Journal of Scientific Instrument,2016,37(12):2836-2343.
    [12]黄云志,郑亮,汪蓓蓓.多波长边缘电场传感器介电测量系统的研究[J].电子测量与仪器学报,2015,29(6):853-859.HUANG Y ZH,ZHENG L,WANG B B.Research on permittivity measurement for multi-wavelength fringing electric field sensor[J].Journal of Electronic Measurement and Instrumentation,2015,29(6):853-859.
    [13]杨勇,陆家榆,鞠勇.基于Deutsch假设法和有限元法的高压直流线路地面合成电场对比分析[J].电网技术,2013,37(2):526-532.YANG Y,LU J Y,JU Y.Contrast and analysis on total electric field at ground level under HVDC transmission lines by deutsch assumption-based method and finite element method[J].Power System Technology,2013,37(2):526-532.
    [14]闫照文.ANSYS 10.0工程电磁分析技术与实例详解[M].北京:中国水利水电出版社,2006.YAN ZH W.ANSYS 10.0 Engineering Electromagnetic Analysis Technology and Case Details[M].Beijing:China Water Conservancy and Hydropower Press,2006.
    [15]吴小雁.超高压交流输电线路电磁场计算与弧垂监测方法研究[D].福州:福州大学,2016.WU X Y.Study on electromagnetism of extra-high voltage AC transmission line and sag monitoring methods[D].Fuzhou:University of Fuzhou,2016.
    [16]彭迎,阮江军.模拟电荷法计算特高压架空线路3维工频电场[J].高电压技术,2006,32(12):69-73.PENG Y RUAN J.Calculation of three-dimensional harmonic electric field around ultra high voltage overhead line based on the charge simulation method[J].High Voltage Engineering,2006,32(12):69-73.
    [17]陈楠,文习山,刘波,等.高压输电导线三维工频电磁场计算与测量[J].电网技术,2011,35(3):159-164.CHEN N,WEN X SH,LIU B,et al.Calculation and measurement for three-dimensional power frequency electrical and magnetic field under transmission line[J].Power System Technology,2011,35(3):159-164.
    [18]林凤羽.LGJ-400/50与LGJ-400/35导线的比较[J].山东电力技术,2001(1):33-37.LIN F.Comparison of Conductors LGJ-400/50 and LGJ-400/35[J].Shandong electric power technology,2001(1):33-37.
    [19]何为,肖冬萍,杨帆.超特高压环境电磁场[M].北京:科学出版社,2013.HE W,XIAO D,YANG F.EHV/UHV Environmental Electromagnetic Field[M].Beijing:Science Press,2013.
    [20]环境保护部,国家质量监督检验检疫总局.GB8702-2014电磁环境控制限值[S].北京:中国环境科学出版社,2014.Ministry of Environmental Protection of the People’s Republic of China,General Administration of Quality Supervision,Inspection and Quarantine of the People's Republic of China.GB 8702-2014 Controlling limits for electromagnetic environment[S].Beijing:China Environmental Science Press,2014.
    [21]肖冬萍.特高压交流输电线路电磁场三维计算模型与屏蔽措施研究[D].重庆:重庆大学,2009.XIAO D P.Research on three dimension calculation models and shielding measures for electromagnetic field of ultra-high voltage AC transmission lines[D].Chongqing:University of Chongqing,2009.
    [22]国家环境保护总局.HJ/T 24-1998 500kV超高压送变电工程电磁辐射环境影响评价技术规范[S].北京:中国环境科学出版社,1998.Ministry of Environmental Protection of the People’s Republic of China.HJ/T 24-1998 Technical regulations on environmental impact assessment of electromagnetic radiation produced by 500 k V extra-high voltage transmission and transfer power engineering[S].Beijing:China Environmental Science Press,Standard Press of China,1998.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700