无霜空气源热泵系统冬季除湿性能初步实验
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Experimental research on a novel frost-free air source heat pump system
  • 作者:邱君君 ; 张小松 ; 李玮豪
  • 英文作者:QIU Junjun;ZHANG Xiaosong;LI Weihao;School of Energy and Environment, Southeast University;
  • 关键词:无霜 ; 实验验证 ; 除湿 ; 空气源热泵
  • 英文关键词:non-frost;;experimental validation;;dehumidification;;air source heat pump
  • 中文刊名:HGSZ
  • 英文刊名:CIESC Journal
  • 机构:东南大学能源与环境学院;
  • 出版日期:2019-01-25 14:14
  • 出版单位:化工学报
  • 年:2019
  • 期:v.70
  • 基金:国家自然科学国际合作基金项目(51520105009)
  • 语种:中文;
  • 页:HGSZ201904041
  • 页数:9
  • CN:04
  • ISSN:11-1946/TQ
  • 分类号:370-378
摘要
通过对比现有的空气源热泵空调系统的优缺点,提出了一种新型无霜空气源热泵空调系统。该热泵系统最大的新颖之处在于热交换塔实现了"一塔三用",不仅冬季可以无霜高效运行与再生,夏季蒸发冷却后性能也有所提升。通过搭建该系统实验平台研究了溶液塔入口空气温湿度、空气流量、溶液入口温度、溶液流量、溶液质量分数对除湿性能及空气出口温度与溶液出口温度的影响,结果表明:出口空气与溶液温度随入口空气温湿度、流量、溶液温度、质量分数的升高,溶液流量的下降而升高;溶液塔的除湿效率主要受风量和溶液流量的影响,而入口空气温湿度、入口溶液温度、溶液质量分数影响很小,溶液塔的除湿量随着室外空气湿度的升高、入口溶液温度的降低、空气流量和溶液流量的升高而升高。
        By comparing the advantages and disadvantages of the existing air source heat pump air conditioning system, a new type of frost-free air source heat pump air conditioning system is proposed. The biggest novelty of this heat pump system is that the heat exchange tower has realized as "one tower in three uses", which can not only run and regenerate effectively without frost in winter, but also improve the performance after evaporative cooling in summer. Through constructing the heat pump system platform, the effects of ambient temperature, humidity, air volume flow rate, inlet solution temperature, solution volume flow rate and solution concentration on dehumidification performance, outlet air and solution temperature are studied. It is concluded that the outlet air and solution temperature increase with the increase of inlet air temperature, humidity, volume flow rate, solution temperature and the decrease of solution volume flow rate. As inlet air temperature rises from-4℃ to 2.5℃, the air outlet temperature increased by 3.32℃, solution tower export solution temperature increased by 1.62℃. As the rise of the solution tower entrance solution temperature, air outlet temperature increased by 1.9℃, export solution temperature increased by 2.66℃. Dehumidification efficiency is mainly affected by air and solution volume flow rate. The inlet air temperature and humidity, solution temperature and solution concentration affect it little, the dehumidification rate increases with higher outdoor air humidity, air volume flow rate, solution volume flow rate and lower solution temperature.
引文
[1] Nishimura T."Heat pumps status and trends"in Asia and the Pacific[J]. International Journal of Refrigeration, 2002, 25(4):405-413.
    [2] Stoecker W F. How frost formation on coils affects refrigeration systems[J]. Refrigeration Engineering, 1957, 65(2):42-46.
    [3] Barrow H. A note on frosting of heat pump evaporator surfaces[J].Heat Recovery System, 1985, 5(3):195-201.
    [4] Yao Y, Jiang Y Q, Deng S M.et al. A study on the performance on the airside heat exchanger under frosting in air-source heat pump water heater/chiller unit[J]. International Journal of Heat and Mass Transfer, 2004, 47(17/18):3745-3756.
    [5]王峰,梁彩华,张小松.超疏水翅片表面的抑霜机理及除霜特性[J].工程热物理学报, 2016,(5):1066-1070.Wang F, Liang C H, Zhang X S. Frost inhibition mechanism and defrosting characteristics of ultrahydrophobic fin surfaces[J].Journal of Engineering Thermophysics, 2016,(5):1066-1070.
    [6]王峰,梁彩华,吴春晓,等.疏水铝翅片表面的结霜/融霜特性[J].中南大学学报(自然科学版), 2016,(4):1368-1373.Wang F, Liang C H, Wu C X, et al. Frosting/defrosting characteristics of hydrophobic aluminum fin surfaces[J]. Journal of Central South University(Science and Technology), 2016,(4):1368-1373.
    [7] Wang F, Liang C H, Yang M T, et al. Preliminary study of a novel defrosting method for air source heat pumps based on superhydrophobic fin[J]. Applied Thermal Engineering, 2016,(107):479-492.
    [8]张又升,赵敬德,王金龙.空气源热泵室外换热器翅片管的融霜过程分析[J].流体机械, 2016,(6):66-71.Zhang Y S, Zhao J D, Wang J L. Analysis on defrosting process of fin tube of air source heat pump outdoor heat exchanger[J]. Fluid Machinery, 2016,(6):66-71.
    [9] Kim J, Choi H J, Kim K C. A combined dual hot-gas bypass defrosting method with accumulator heater for an air-to-air heat pump in cold region[J]. Applied Energy, 2015, 147:344-352.
    [10]谭海辉,陶唐飞,徐光华,等.翅片管式蒸发器超声波除霜理论与技术研究[J].西安交通大学学报, 2015,(9):105-113.Tan H H, Tao T F, Xu G H, et al. Study on ultrasonic defrosting theory and technology of finned tube evaporator[J]. Journal of Xi'an Jiaotong University, 2015,(9):105-113.
    [11] Tan H H, Xu G G, Tao T F, et al. Investigation on the ultrasonic propagation mechanism and its application on air-source heat pump defrosting[J]. Applied Thermal Engineering, 2016, 107:479-492.
    [12]孙家正.空气源热泵除霜方法的研究现状及展望[J].建筑热能通风空调, 2017, 36(8):42-46.Sun J Z. Present state and prospect of defrosting method for air source heat pump[J]. Building Energy&Environment, 2017, 36(8):42-46.
    [13]韩志涛,姚杨,马最良,等.空气源热泵误除霜特性的实验研究[J].暖通空调, 2006, 36(2):15-19.Han Z T, Yao Y, Ma Z L, et al. Experiment on characteristics of an air source heat pump in false defrosting[J]. Heating Ventilation&Air Conditioning, 2006, 36(2):15-19.
    [14]张杰,兰菁,杜瑞环,等.几种空气源热泵除霜方式的性能比较[J].制冷学报, 2012, 33(2):47-49.Zhang J, Lan J, Du R H, et al. The performance comparison of several defrosting modes for air-source heat pump[J]. Journal of Refrigeration, 2012, 33(2):47-49.
    [15]曹小林,曹双俊,段飞,等.空气源热泵除霜问题研究现状与展望[J].流体机械, 2011, 39(4):75-79.Cao X L, Cao S J, Duan F, et al. Current situation and development prospect of air source heat pump defrosting research[J]. Fluid Machinery, 2011, 39(4):75-79.
    [16]李九如,孔祥鹏,王妍,等.空气源热泵除霜动态特性实验台研制[J].哈尔滨理工大学学报, 2012, 17(5):26-28.Li J R, Kong X P, Wang Y, et al. Development of air source heat pump defrosting structures bench[J]. Journal of Harbin University of Science and Technology, 2012, 17(5):26-28.
    [17]龚建英,袁秀玲.空气源热泵蒸发器结霜过程数值模拟[J].低温与超导, 2010, 38(5):53-57.Gong J Y, Yuan X L. Simulation study on evaporator frosting process of air source heat pump[J]. Cryogenics&Superconductivity, 2010, 38(5):53-57.
    [18]郭宪民,王冬丽,陈轶光,等.室外换热器迎面风速对空气源热泵结霜特性的影响[J].化工学报, 2012, 63(S2):32-37.Guo X M, Wang D L, Chen Y G, et al. Effects of face velocity of outdoor heat exchanger on frosting characteristics of air source heat pump system[J]. CIESC Journal, 2012, 63(S2):32-37.
    [19]尹从绪,陈轶光.风速对空气源热泵翅片管换热器结霜特性影响[J].低温与超导, 2011, 39(12):50-52.Yin C X, Chen Y G. The effects of wind speed on frosting characteristics of fin-tube heat exchanger for air source heat pump[J]. Cryogenics&Superconductivity, 2011, 39(12):50-52.
    [20]汪峰,梁彩华,杨明涛,等.翅片表面融霜水滞留机理及其影响因素[J].化工学报, 2014, 65(S2):101-106.Wang F, Liang C H, Yang M T, et al. Mechanism and influence factors of frost melt water retention on fins[J]. CIESC Journal,2014, 65(S2):101-106.
    [21]薛利平,郭宪民,邢震.环境参数对翅片管换热器表面结霜特性影响的实验研究[J].低温与超导, 2017, 45(4):66-71.Xue L P, Guo X M, Xing Z. Experimental study on frost growth characteristics on surface of finned-tube heat exchanger[J].Cryogenics&Superconductivity, 2017, 45(4):66-71.
    [22]黄东,袁秀玲.风冷热泵冷热水机组热气旁通除霜与逆循环除霜性能对比[J].西安交通大学学报, 2006, 40(5):539-543.Huang D, Yuan X L. Comparison of dynamic characteristics between the hot-gas bypass defrosting method and reverse-cycle defrosting method on an air-to-water heat pump[J]. Journal of Xi'an Jiaotong University, 2006, 40(5):539-543.
    [23]马素霞,蒋永明,温波,等.相变蓄热式蒸发空气源热泵性能的实验研究[J].太阳能学报, 2015,(3):604-609.Ma S X, Jiang Y M, Wen B, et al. Experimental study on the performance of phase change heat storage evaporative air source heat pump[J]. Journal of Solar Energy, 2015,(3):604-609.
    [24] Zhang L, Fujinawa T, Saikawa M. A new method for preventing air-source heat pump water heaters from frosting[J]. International Journal of Refrigeration, 2012, 35(5):1327-1334.
    [25] Wang Z H, Zheng Y X, Wang F H. Experimental analysis on a novel frost-free air-source heat pump water heater system[J].Applied Thermal Engineering, 2014, 70:808-816.
    [26] Wang Z H, Wang F H, Zheng Y X. Experimental study on a new type of frost-free air source heat pump water heater[J]. Journal of Refrigeration, 2015, 36(1):52-58.
    [27] Wang Z H, Wang F H, Ma Z J. Numerical study on the operating performances of a novel frost-free air-source heat pump unit using three different types of refrigerant[J]. Applied Thermal Engineering, 2017, 112:248-258.
    [28]梁明坤,陈传宝,刘伟.板式蒸发冷凝气源热泵的无霜加热试验与验证[J].机械制造与自动化(机械制造与自动化), 2016, 45(6):70-73.Liang M K, Chen C B, Liu W. Test&verification of frostless heating of plate-type evaporation-condensation air-source heat pump[J]. Machinery Manufacturing&Automation, 2016, 45(6):70-73.
    [29] Jiang Y Q, Fu H Y, Yao Y. Experimental study on concentration change of spray solution used for a novel non-frosting air source heat pump system[J]. Energy and Buildings, 2014, 68:707-712.
    [30] Su W, Zhang X S. Performance analysis of a novel frost-free airsource heat pump with integrated membrane-based liquid desiccant dehumidification and humidification[J]. Energy and Buildings, 2017, 145:293-303.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700