1000MW超超临界锅炉低NO_x燃烧器改造的数值模拟研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Numerical Simulation Study on Retrofit of Low NO_x Burner for 1000MW Ultra-supercritical Boiler
  • 作者:关新河 ; 李彦 ; 朱群志 ; 管明健
  • 英文作者:GUAN Xinhe;LI Yan;ZHU Qunzhi;GUAN Mingjian;College of Energy and Mechanical Engineering, Shanghai University of Electric Power;EBARA QINGDAO CO.,LTD;
  • 关键词:1000MW超超临界锅炉 ; 数值模拟 ; 燃烧器改造 ; 耦合 ; 还原性氛围 ; 低NOx排放 ; 结焦
  • 英文关键词:1000MW ultra supercritical boiler burner;;numerical simulation;;retrofit;;coupling;;reducing atmosphere;;low NOx emissions;;coking
  • 中文刊名:ZGDC
  • 英文刊名:Proceedings of the CSEE
  • 机构:上海电力学院能源与机械工程学院;青岛荏原环境设备有限公司;
  • 出版日期:2019-04-20
  • 出版单位:中国电机工程学报
  • 年:2019
  • 期:v.39;No.619
  • 基金:上海市科学技术委员会项目(18020501000)~~
  • 语种:中文;
  • 页:ZGDC201908020
  • 页数:9
  • CN:08
  • ISSN:11-2107/TM
  • 分类号:204-211+362
摘要
在炉膛燃烧的数值模拟中,大多数研究都是将一次风在炉膛进口处简化为一个平面,或者分成浓煤粉平面和淡煤粉平面,认为煤粉均匀进入炉膛,造成模拟结果与实际运行情况不完全相符。使用CFD计算软件,将燃烧器和锅炉分别独立计算,再通过CFD技术手段,将得到的燃烧器数据耦合导入炉膛各个一次风入口处进行再计算,这样一次风进口就不是均匀进口,而是具有一定的速度场和颗粒场,更加符合实际运行情况。为降低NOx排放,对一台1000MW炉膛的直流燃烧器进行改造,改造前模拟结果与实际运行数据的对比结果表明,使用CFD计算软件是可行的。对燃烧器的管道进行改造,改造后的模拟结果表明,炉膛内部还原性氛围面积增加,有利于降低NOx;煤粉碰壁的概率降低,有利于降低结焦的可能性。计算结果显示,炉膛出口处NOx浓度明显降低。为实际中改造燃烧器提供一个方向。
        In the numerical simulation of furnace combustion, most of the studies have simplified the primary air at the inlet of the furnace into a plane, or divided into a concentrated pulverized coal plane and a light pulverized coal plane. It is considered that the coal powder enters the furnace uniformly, resulting in some deviation between simulation results and actual operation. In this paper, CFD calculation software was used to calculate the burner and the boiler separately, and then the obtained burner data was coupled into each primary air inlet of the furnace for recalculation, so that the primary air inlet was not evenly imported. It had a certain speed field and particle field, which was more in line with the actual operation. In order to reduce NOx emissions, this paper retrofitted the 1000 MW furnace burners. The comparison between the simulation results and the actual operation data showed that it was feasible to use CFD calculation software. In this paper, the pipeline of the burner was retrofitted. The simulation results showed that the area of reducing atmosphere inside the furnace was increased, which was beneficial to reducing NOx emission. The probability of pulverized coal colliding with water wall decreased, which was beneficial to reducing the possibility of coking. The calculation results show that NOx concentration at the exit of the furnace was significantly reduced. The study provided a direction for the actual retrofit of the burners.
引文
[1]中国能源发展报告2018[J].中国电业,2018(10):2.China energy development report 2018[J].China Electric Power,2018(10):2(in Chinese).
    [2]环保部,国家发改委,国家能源局.环保部、国家发改委、国家能源局印发《全面实施燃煤电厂超低排放和节能改造工作方案》通知[C]//“双盾环境杯”第四届全国烟气脱硫脱硝及除尘除汞技术年会(2016)论文集.苏州:中国化工学会,2016:3.Ministry of Environmental Protection,National Development and Reform Commission,National Energy Administration.The Ministry of environmental protection,the national development and reform commission,and the national energy administration issued the notice on the comprehensive implementation of the work plan for ultra-low emissions and energy-saving reconstruction of coal-fired power plants[C]//“Double Shield Environmental Cup”4th National Flue Gas Desulfurization,Denitrification and Dedusting Technology(2016)Proceedings.Suzhou:The Chemical Industry and Engineering Society of China,2016:3(in Chinese).
    [3]马双忱,金鑫,孙云雪,等.SCR烟气脱硝过程硫酸氢铵的生成机理与控制[J].热力发电,2010,39(8):12-17.Ma Shuangchen,Jin Xin,Sun Yunxue,et al.The formation mechanism of ammonium bisulfate in SCR flue gas denitrification process and control thereof[J].Thermal Power Generation,2010,39(8):12-17(in Chinese).
    [4]陈太平.300MW煤粉锅炉SCR烟气脱硝装置数值模拟及结构优化[D].哈尔滨:哈尔滨工业大学,2015.Chen Taiping.The mathematical modeling and optimal design of a SCR Denoxsystem for a 300MW pulverized coal fired boiler[D].Harbin:Harbin Institute of Technology,2015(in Chinese).
    [5]周国.燃煤电站锅炉中的低NOx燃烧技术[J].节能技术,2005,23(1):44-46,76.Zhou Guo.Low NOx combustion technique for power plant boiler[J].Energy Conservation Technology,2005,23(1):44-46,76(in Chinese).
    [6]孙公钢.燃用劣质煤的新型钝体稳燃器及锅炉低污染燃烧改造的数值模拟与试验研究[D].杭州:浙江大学,2006.Sun Gonggang.Numerical and experimental study on the novel blunt-body burner and low NOx combustion reconstruture used in power plant boilers[D].Hangzhou:Zhejiang University,2006(in Chinese).
    [7]李金晶,赵振宁,张清峰.2070t/h旋流燃烧锅炉的低NOx燃烧优化[J].锅炉技术,2018,49(2):38-42.Li Jinjing,Zhao Zhenning,Zhang Qingfeng.Low-NOx combustion optimization on a 2070 t/h boiler with swirling burners[J].Boiler Technology,2018,49(2):38-42(in Chinese).
    [8]赵伶玲,周强泰.复杂曲面花瓣燃烧器煤粉燃烧数值分析[J].中国电机工程学报,2007,27(5):39-44.Zhao Lingling,Zhou Qiangtai.Numerical analysis of the petal swirl burner with complex geometry configuration for pulverized coal[J].Proceedings of the CSEE,2007,27(5):39-44(in Chinese).
    [9]张攀,范祥子.煤粉锅炉低氮燃烧及SNCR联合脱硝技术研究[J].洁净煤技术,2018,24(1):142-147.Zhang Pan,Fan Xiangzi.Low nitrogen combustion of pulverized coal furnace and SNCR denitration technology[J].Clean Coal Technology,2018,24(1):142-147(in Chinese).
    [10]刘义,孙皓,张广才.600MW机组锅炉低氮燃烧器运行特性分析[J].广西电力,2016,39(1):42-45.Liu Yi,Sun Hao,Zhang Guangcai.Analysis of operation performance of boiler low nitrogen burner in 600 MWunit[J].Guangxi Electric Power,2016,39(1):42-45(in Chinese).
    [11]孙雅丽,郑骥,姜冰.燃煤电厂烟气氮氧化物排放控制技术发展现状[J].环境科学与技术,2011,34(S1):174-179.Sun Yali,Zheng Ji,Jiang Bing.NOx control technologies for coal-fired power plants flue gas[J].Environmental Science and Technology,2011,34(S1):174-179(in Chinese).
    [12]王宁,苏新兵,马斌麟,等.网格类型对流场计算效率和收敛性的影响[J].空军工程大学学报:自然科学版,2018,19(1):9-14.Wang Ning,Su Xinbing,Ma Binlin,et al.A study of influence of mesh type on fluid computational efficiency and convergence[J].Journal of Air Force Engineering University:Natural Science Edition,2018,19(1):9-14(in Chinese).
    [13]李振中,冯兆兴,王阳,等.煤粉双级垂直浓淡燃烧降低NOx排放及稳燃技术的研究[J].中国电机工程学报,2003,23(11):184-188.Li Zhenzhong,Feng Zhaoxing,Wang Yang,et al.Study on a dual vertical dense/lean combustion of pulverized coal in order to decrease NOx emission and stabilize combustion[J].Proceedings of the CSEE,2003,23(11):184-188(in Chinese).
    [14]刘建全,孙保民,胡永生,等.某1000MW超超临界双切圆锅炉燃烧特性的数值模拟与优化[J].中国电机工程学报,2012,32(20):34-41.Liu Jianquan,Sun Baomin,Hu Yongsheng,et al.Numerical simulation and optimization on combustion of a 1000 MW ultra-supercritical dual tangential circle boiler[J].Proceedings of the CSEE,2012,32(20):34-41(in Chinese).
    [15]管明健,李彦,马晟恺.1000 MW塔式锅炉炉内燃烧特性的数值模拟[J].上海电力学院学报,2018,34(2):115-118.Guan Mingjian,Li Yan,Ma Shengkai.Numerical simulation of combustion characteristics in a 1000 MWtower boiler[J].Journal of Shanghai University of Electric Power,2018,34(2):115-118(in Chinese).
    [16]Zhang Zhi,Li Zhenshan,Cai Ningsheng.Reduced-order model of char burning for CFD modeling[J].Combustion and Flame,2016,165:83-96.
    [17]岑可法,姚强,骆仲泱,等.燃烧理论与污染控制[M].北京:机械工业出版社,2004:410-460.Cen Kefa,Yao Qiang,Luo Zhongyang,et al.Combustion theory and pollution control[M].Beijing:China Machine Press,2004:410-460(in Chinese).
    [18]汪华剑,赵斯楠,方庆艳,等.1000MW塔式锅炉中低负荷下低NOx排放优化[J].动力工程学报,2016,36(10):765-772,794.Wang Huajian,Zhao Sinan,Fang Qingyan,et al.NOx emission optimization of a 1000MW tower boiler during medium and low load operation[J].Journal of Chinese Society of Power Engineering,2016,36(10):765-772,794(in Chinese).
    [19]白涛,郭永红,孙保民,等.1025t/h旋流燃烧器煤粉炉降低NOx生成的数值模拟[J].中国电机工程学报,2010,30(29):16-23.Bai Tao,Guo Yonghong,Sun Baomin,et al.Numerical simulation of decreasing NOx emission in a swirling combustion pulverized coal boiler[J].Proceedings of the CSEE,2010,30(29):16-23(in Chinese).
    [20]Spinti J P,Pershing D W.The fate of char-N at pulverized coal conditions[J].Combustion and Flame,2003,135(3):299-313.
    [21]Hill S C,Smoot L D.Modeling of nitrogen oxides formation and destruction in combustion systems[J].Progress in Energy and Combustion Science,2000,26(4-6):417-458.
    [22]白月娟,王永英.低NOx煤粉燃烧器技术研究进展[J].煤质技术,2018(2):42-47.Bai Yuejuan,Wang Yongying.Research development of typical low NOx burners for pulverized coal[J].Goal Quality Technology,2018(2):42-47(in Chinese).
    [23]唐家毅,卢啸风,刘汉周,等.国外低NOx煤粉燃烧器的研究进展及发展趋势[J].热力发电,2008,37(2):13-18.Tang Jiayi,Lu Xiaofeng,Liu Hanzhou,et al.Research advancement and developing trend of low NOx burners for pulverized coal at abroad[J].Journal of Thermal Power Generation,2008,37(2):13-18(in Chinese).
    [24]梁冬.应用浓缩型XCL旋流燃烧器的600MW褐煤锅炉低氮排放的研究[D].哈尔滨:哈尔滨工业大学,2016.Liang Dong.The research on low nitrogen emission for concentrated XCL swirl burners used for a 600MW boler burning lignite coal[D].Harbin:Harbin Institute of Technology,2016(in Chinese).
    [25]蔡兴飞.新型低NOx旋流燃烧器的实验研究与数值模拟[D].武汉:华中科技大学,2011.Cai Xingfei.Experimental study and numerical simulation ona new type of low-NOx swirl burner[D].Wuhan:Huazhong University of Science and Technology,2011(in Chinese).
    [26]栾积毅,高建民,武雪梅,等.链条炉分区段烟气再循环对锅炉运行及NOx排放特性影响的工业试验[J].热能动力工程,2017,32(10):90-94.Luan Jiyi,Gao Jianmin,Wu Xuemei,et al.Industrial test of influence of flue gas recirculation in sectional furnace on boiler operation and NOxemission characteristics[J].Journal of Engineering for Thermal Energy and Power,2017,32(10):90-94(in Chinese).
    [27]王勇.240t/h循环流化床锅炉低氮燃烧技术应用探讨[D].济南:山东大学,2017.Wang Yong.Study on theapplication of low nitrogen combustion technology for 240t/h CFB boiler[D].Jinan:Shandong University,2017(in Chinese).
    [28]张晓辉,孙锐,孙绍增,等.立体分级燃烧对NOx排放特性的影响[J].机械工程学报,2009,45(2):199-205.Zhang Xiaohui,Sun Rui,Sun Shaozeng,et al.Effects of stereo-staged combustion technique on NOx emmisioncharactisctics[J].Journal of Mechanical Engineering,2009,45(2):199-205(in Chinese).

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700