磁感应强度基准技术评述
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Review of the Technologies of the Magnetic Flux Density Base Standard
  • 作者:伏吉庆 ; 张伟 ; 贺青
  • 英文作者:FU Ji-qing;ZHANG Wei;HE Qing;Division of Electricity and Magnetism,National Institute of Metrology;
  • 关键词:计量学 ; 磁感应强度基准 ; 量子基准 ; 核磁共振 ; 原子磁共振
  • 英文关键词:metrology;;MFD base standard;;quantum standard;;NMR;;AMR
  • 中文刊名:JLXB
  • 英文刊名:Acta Metrologica Sinica
  • 机构:中国计量科学研究院电磁计量科学研究所;
  • 出版日期:2019-07-22
  • 出版单位:计量学报
  • 年:2019
  • 期:v.40;No.181
  • 基金:国家重点研发计划"国家质量基础的共性技术研究与应用"重点专项(2017YFF02055704)
  • 语种:中文;
  • 页:JLXB201904025
  • 页数:4
  • CN:04
  • ISSN:11-1864/TB
  • 分类号:162-165
摘要
从不确定度和应用情况等方面介绍了当前磁感应强度量值单位的几类基准,包括基于计算线圈的实物基准、基于核磁共振原理的量子基准和基于质子旋磁比的基本物理常数基准。量子精密测量领域近年来发展迅速,出现了比传统核磁共振基准的准确度更高的原子磁共振量子基准、可以进一步拓展核磁共振基准的量值下限的超导-核磁共振技术等新进展。重点评述了现有的磁感应强度的量子基准,并介绍了一些有望进一步拓展磁学计量前沿的新进展。
        To reviews the uncertainty and the application about currently used base standards about magnetic flux density( MFD),which include the artifactitious standard based on calculated coil,the quantum standard based on the principle of nuclear magnetic resonance( NMR),and the fundamental physical constant standard based on gyromagnetic ratio of proton. The field of quantum precise measurement is developing rapidly in recent years,and some new advances are bring out like the atomic magnetic resonance( AMR) quantum standard which can achieve higher accuracy than NMR standards,and the superconducting NMR technology which can expand the lower bound of NMR standards. To particularly reviews the technologies about the current quantum stands of MFD,and briefly introduces some new techniques that expected to expand the new frontiers of magnetic metrology.
引文
[1] Shifrin V Y,Park P G,Khorev V N,et al. A New LowField Determination of the Proton Gyromagnetic Ratio in Water[J]. IEEE Transactions on Instrumentation&Measurement,1998,47(3):638-643.
    [2] Williams E R,Jones G R,Ye S,et al. A low field determination of the proton gyromagnetic ratio in water[J]. IEEE Transactions on Instrumentation and Measurement,1989,38(2):233-237.
    [3] Weyand K. Final Report of CCEM Key Comparison CCEM. M-K1:Magnetic flux density by means of transfer standard coil[J]. Metrologia,2005,42(1A):01 006.
    [4] Park P G, Kim W S, Kim Y G, et al. Bilateral comparison of DC magnetic flux density between NMLSIRIM and KRISS(P1-APMP. EM-S13)[J]. Metrologia,2014,51(1A):01014.
    [5]张伟.高均匀度磁场线圈的设计[J].计量学报,2010,31(5):404-407.Zhang W. The design of magnetic coil with high homogeneity[J]. ACTA Metrologica Sinica,2010,31(5):404-407.
    [6]张伟汤元会.磁场线圈常数的频率响应测量[J].计量学报,2016,37(1):102-104.Zhang W, Tang Y H. Field coil constant frequency response measurement[J]. ACTA Metrologica Sinica,2016,37(1):102-104.
    [7] Keifer P A. Flow techniques in NMR spectroscopy[J].Annual Reports on NMR Spectroscopy,2007,62(07):1-47.
    [8] Reinhold K. Use of the Nuclear Overhauser Effect in the Analysis of High-Resolution Nuclear Magnetic Resonance Spectra[J]. The Journal of Chemical Physics,1963,39(10):2435-2442.
    [9] Shifrin V Y,Khorev V N,Rasson J,et al. International comparisons to establish the traceability in the global network of geomagnetic observatories to SI units[J].Metrologia,2014,51(1A):01 015.
    [10] Kraft A,Koch H C,Daum M,et al. Development of a3He magnetometer for a neutron electric dipole moment experiment[J]. EPJ Techniques and Instrumentation,2014,1(1):1-15.
    [11] Greenberg Y S. Application of superconducting quantum interference devices to nuclear magnetic resonance[J].Rev mod phys,1998,70(1):175-222.
    [12] Budker D,Romalis M. Optical Magnetometry[J]. Nature physics,2007,3:227-234.
    [13] Gilles H,Hamel J,Cheron B. Laser pumped4He magnetometer[J]. Review of Scientific Instruments,2001,72(5):2 253-2 260.
    [14] Blinov E V,Zhitnikov R A,Kuleshov P P. Alkalihelium magnetometer[J]. Sov Phys Tech Phys,1979,24(3):588-596.
    [15] Shifrin V Y,Alexandrov E B,Chikvadze T I. Magnetic flux density standard for geomagnetometers[J].Metrologia,2000,37(3):219-227.
    [16] Vershovskii A K,Pazgalev A S,Aleksandrov E B. The design of aΛ-HFS magnetometer[J]. Technical Physics,2000,45(1):88-93.
    [17] Shifrin V Y,Park P G,Kim C G,et al. Experimental determination of the gyromagnetic ratio of the helium 4atom in terms of that of the helium-3 nucleus[J]. IEEE Transactions on Instrumentation and Measurement,1997,46(2):97-100.
    [18] Kibble B P, Hunt G J. A Measurement of the Gyromagnetic Ratio of the Proton in a Strong Magnetic Field[J]. Metrologia,1979,15(1):5-30.
    [19] Shifrin V Y, Park P G, Khorev V N, et al.Determination of the tesla-to-ampere ratio for the KRISS/VNIIM-experiment[J]. IEEE Transactions on Instrumentation and Measurement,1999,48(2):196-199.
    [20] Mohr P J, Newell D B, Taylor B N. CODATA recommended values of the fundamental physical constants:2014[J]. Reviews of Modern Physics,2016,88(3):035 009.
    [21] Aleksandrov E B,VershovskǐA K,Pazgalev A S.Magnetometer based on a pair of symmetric transitions in the87Rb hyperfine structure[J]. Technical Physics,2006,51(7):919-923.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700