人机相容型肩关节康复外骨骼机构的运动学与灵活性分析
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Kinematics and Dexterity Analysis of the Human-machine Compatible Exoskeleton Mechanism for Shoulder Joint Rehabilitation
  • 作者:李剑锋 ; 刘钧辉 ; 张雷雨 ; 陶春静 ; 季润 ; 赵朋波
  • 英文作者:LI Jianfeng;LIU Junhui;ZHANG Leiyu;TAO Chunjing;JI Run;ZHAO Pengbo;Beijing Key Laboratory of Advanced Manufacturing Technology, Beijing University of Technology;National Research Center for Rehabilitation Technical Aids;
  • 关键词:肩关节康复 ; 外骨骼机构 ; 人机相容性 ; 运动学分析 ; 运动灵活性
  • 英文关键词:shoulder joint rehabilitation;;exoskeleton mechanism;;human-machine compatibility;;kinematical analysis;;kinematic dexterity
  • 中文刊名:JXXB
  • 英文刊名:Journal of Mechanical Engineering
  • 机构:北京工业大学北京市先进制造技术重点实验室;国家康复辅具研究中心;
  • 出版日期:2017-09-18 17:30
  • 出版单位:机械工程学报
  • 年:2018
  • 期:v.54
  • 基金:国家自然科学基金(51675008,51705007);; 北京市自然科学基金(3171001);; 中国博士后科学基金(2016M600021);; 北京市科技计划(Z161100001516004)资助项目
  • 语种:中文;
  • 页:JXXB201803007
  • 页数:9
  • CN:03
  • ISSN:11-2187/TH
  • 分类号:60-68
摘要
针对人体肩关节运动障碍的康复训练需求,提出一种3R-PU型串联肩关节康复外骨骼机构,可以实现肩关节的内收/外展、前屈/后伸和内旋/外旋运动。通过在人机界面引入被动关节P和U,使外骨骼机构与上臂形成的人机闭链转化为3-DOF运动学恰约束系统,实现外骨骼机构与人体上臂的运动学相容。基于人体肩部各关节间的运动耦合分析,得到盂肱关节转心(Center of glenohumeral,CGH)在上臂抬升过程中相对于胸骨的位置变化关系。通过建立人机闭链的运动学模型,并进行位置逆解析,得到外骨骼机构各运动副的角位移变化曲线;同时,推导了人机闭链的速度雅可比矩阵,进行了运动灵活性分析。结果表明:被动关节P和U的运动幅度均较大,引入被动关节有益于解除人机界面处的运动约束,进而降低人机之间的约束强度;当上臂在0°、45°、90°和135°抬升面内运动时,外骨骼机构具有较好的运动灵活性。研究结果为外骨骼机构的运动规划与控制提供了分析依据。
        For the rehabilitation needs of shoulder joint movement disorder, a 3R-PU serial shoulder rehabilitation exoskeleton mechanism is proposed to realize the movements of abduction/adduction, flexion/extension, internal/external. To realize humanmachine kinematic compatibility, the human-machine closed chain which consists of the exoskeleton mechanism and the upper limb is translated into an exact kinematic constraints system with three degrees of freedom by introducing a passive sliding pair P and a hooke hinge U in the human-machine interface. Based on the kinematic coupling analysis of related joints in shoulders, the position changes relationship of the center of glenohumeral joint(CGH) relative to the location of the sternum are obtained. The angular displacement curves of kinematic pairs of the exoskeleton mechanism are acquired by establishing the model of the human-machine closed chain and solving the position inverse solution. Furthermore, the velocity Jacobian matrix of the human-machine closed chain is derived and the kinematic dexterity is analyzed. The results show that the motion amplitude of passive joint P and U are larger in the rehabilitation training process, passive joints introduced are beneficial to release motion constraints of human-machine interface, and then the constraint intensity of human-machine is reduced. Meanwhile, this exoskeleton mechanism has better kinematic dexterity when the upper arm is elevated at 0°, 45°, 90° and 135° lifting surface. The above research results will provide analysis basis for the exoskeleton mechanism motion planning and control.
引文
[1]SCHIELE A,VANDERHELM F C T.Kinematic design to improve ergonomics in human machine interaction[J].IEEE Transactions on Neural Systems and Rehabilitation Engineering,2006,14(4):456-469.
    [2]NEF T,RIENER R.Shoulder actuation mechanisms for arm rehabilitation exoskeletons[C]//2nd IEEE/RAS&EMBS International Conference on Biomedical Robotics and Biomechatronics,October 19-22,2008,Scottsdale,AZ,USA.Piscataway,USA:IEEE,2008:862-868.
    [3]LI Jiangfeng,ZHANG Ziqiang,TAO Chunjing,et al.Structure design of lower limb exoskeletons for gait training[J].Chinese Journal of Mechanical Engineering,2015,28(5):878-887.
    [4]JARRASSéN,MOREL G.Connecting a human limb to an exoskeleton[J].IEEE Transactions on Robotics,2012,28(3):697-709.
    [5]LI Zhiqiang,XIE Hanxing,LI Weilin,et al.Proceeding of human exoskeleton technology and discussions on future research[J].Chinese Journal of Mechanical Engineering,2014,27(3):437-447.
    [6]NEF T,MIHELJ M,COLOMBO G.ARMin-robot for rehabilitation of the upper extremities[C]//Proceedings2006 IEEE International Conference on Robotics and Automation(ICRA 2006),May 2006,Orlando,Florida.Piscataway,USA:IEEE,2006:3152-3157.
    [7]RAHMAN M H,RAHMAn N M J,et al.Development of whole arm wearable robotic exoskeleton for rehabilitation and to assist upper limb movements[J].Robotica,2015,33(1):19-39.
    [8]PERRY J C,ROSEN J,BURNS S.Upper-limb powered exoskeleton design[J].IEEE/ASME transactions on mechatronics,2007,12(4):408-417.
    [9]VERTECHY R,FRISOLI A,DETTORI A,et al.Development of a new exoskeleton for upper limb rehabilitation[C]//2009 IEEE 11th International Conference on Rehabilitation Robotics,June 23-26,2009,Kyoto International Conference Center,Japan.Piscataway,USA:IEEE,2009:188-193.
    [10]OTTEN A,VOORT C.LIMPACT:a hydraulically powered self-aligning upper limb exoskeleton[J].IEEE/ASME transactions on mechatronics,2015,20(5):2285-2298.
    [11]PARK H S,REN Y,ZHANG L Q,et al.Intelli Arm:An exoskeleton for diagnosis and treatment of patients with neurological impairments[C]//2nd IEEE/RAS&EMBS International Conference on Biomedical Robotics and Biomechatronics.October 19-22,2008,Scottsdale,AZ,USA.Piscataway,USA:IEEE,2008:109-114.
    [12]REN Y,PARK H S,ZHANG L Q.Developing a whole-arm exoskeleton robot with hand opening and closing mechanism for upper limb stroke rehabilitation[C]//2009 IEEE 11th International Conference on Rehabilitation Robotics,June 23-26,2009,Kyoto International Conference Center,Japan.Piscataway,USA:IEEE,2009:761-765.
    [13]BALL S J,BROWN I E.MEDARM:A rehabilitation robor with 5DOF at the shoulder complex[C]//2007IEEE/ASME international conference on Advanced intelligent mechatronics,January 2007,Kingston,Canada.Piscataway,USA:IEEE,2007:1-6.
    [14]NEF T,GUIDALI M,RIENER R.ARMin III-arm therapy exoskeleton with an ergonomic shoulder actuation[J].Applied Bionics and Biomechanics,2009,6(2):127-142.
    [15]KOO D,Ch ANG P H,SOHN M K.Shoulder mechanism design of an exoskeleton robot for stroke patient rehabilitation[C]//2011 IEEE International Conference on Rehabilitation Robotics,June 29-July 1,2011,Rehab Week Zurich,ETH Zurich Science City,Switzerland.Piscataway,USA:IEEE,2011:1-6.
    [16]KLOPCAR N,LENARCC J.Bilateral and unilateral shoulder girdle kinematics during humeral elevation[J].Clinical Biomechanics,2006,21:S20-S26.
    [17]陈文斌.人体上肢运动学分析与类人肢体设计及运动规划[D].武汉:华中科技大学,2012.CHEN Wenbin.Human upper limb kinematics and anthropomorphic robot kinematic design and motion planning[D].Wuhan:Huazhong University of Science and Technology,2012
    [18]CHEN W,XIONG C,HUNANG X,et al.Kinematic analysis and dexterity evaluation of upper extremity in activities of daily living[J].Gait&Posture,2010,32(4):475-481.
    [19]黄真,赵永生,赵铁石.高等空间机构学[M].北京:高等教育出版社,2006.HUANG Zhen,ZHAO Yongsheng,ZHAO Tieshi.Advanced spatial mechanism[M].Beijing:Higher Education Press,2006.
    [20]李剑锋,袁树峥.人体上肢运动的雅克比矩阵与灵活性分析[J].上海交通大学学报,2014,2(48):173-180.LI Jianfeng,YUAN Shuzheng.Jacobian matrix and kinematic dexterity analysis of human upper limb motion[J].Journal of Shanghai Jiaotong University,2014,2(48):173-180.
    [21]中华人民共和国国家技术监督局.GB/T10000-1988中国成年人人体尺寸[S].北京:中国标准出版社,1989.General Administration of Quality Supervision,Inspection and Quarantine of People’s Republic of China.GB/T10000-1988 Human dimensions of Chinese adults[S].Beijing:Standards Press of China,1989.
    [22]SALISBURY J K,CRAIG J J.Articulated hands:Force control and kinematic issues[J].The International journal of Robotics research,1982,1(1):4-17.
    [23]MERLET J P.Jacobian,manipulability,condition number,and accuracy of parallel robots[J].Journal of Mechanical Design,2006,128(1):199-206.
    [24]谢碧云,赵京.基于条件数约束的方向可操作度[J].机械工程学报,2010,46(23):8-15.XIE Biyun,ZHAO Jing.Directional manipulability constrained by the condition number[J].Journal of Mechanical Engineering,2010,46(23):8-15.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700