一种新型自适应康复外骨骼机构及重力平衡优化
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:New Type of Self-adapting Rehabilitation Exoskeleton and Gravity Balance Optimization
  • 作者:李剑锋 ; 赵朋波 ; 张雷雨 ; 陶春静 ; 季润 ; 刘钧辉
  • 英文作者:LI Jianfeng;ZHAO Pengbo;ZHANG Leiyu;TAO Chunjing;JI Run;LIU Junhui;Advanced Manufacturing Technol.Lab.,Beijing Univ.of Technol.;National Research Center for Rehabilitation Technical Aids;
  • 关键词:上肢康复 ; 外骨骼 ; 构型综合 ; 人机相容性 ; 重力平衡
  • 英文关键词:upper limb rehabilitation;;exoskeleton;;configuration synthesis;;human-machine compatibility;;gravity balance
  • 中文刊名:SCLH
  • 英文刊名:Advanced Engineering Sciences
  • 机构:北京工业大学北京市先进制造技术重点实验室;国家康复辅具研究中心;
  • 出版日期:2018-08-29 23:35
  • 出版单位:工程科学与技术
  • 年:2018
  • 期:v.50
  • 基金:国家自然科学基金资助项目(51705007;51675008);; 北京市自然科学基金资助项目(3171001;17L20019);; 中国博士后科学基金资助项目(2016M600021);; 北京市博士后基金资助项目(2017-ZZ-038);; 北京市科技计划项目资助项目(2161100001516004;KM201810005015)
  • 语种:中文;
  • 页:SCLH201805034
  • 页数:8
  • CN:05
  • ISSN:51-1773/TB
  • 分类号:267-274
摘要
针对上肢运动功能障碍患者,康复外骨骼机构在肩、肘关节康复训练中的应用越来越多,由于盂肱关节的浮动属性及难以避免的穿戴误差,人机对应关节的轴线难以始终保持对齐,致使人-机连接界面处产生较大的附加力/矩,严重影响训练效果及穿戴舒适度。为消除产生的附加力/矩,提出一种4R3P2R型自适应上肢康复外骨骼机构,并对其进行位置逆解及重力平衡优化。该型上肢康复外骨骼在肩、肘关节处采用PPRRRP和PRRR构型,支链PPRRRP与肩关节构成3-DOF恰约束人机闭链。同理,支链PRRR与肘关节构成平面2-DOF的恰约束人机闭链。在该外骨骼构型的基础上,建立人机闭链运动学模型,求其位置逆解,推导出任意位姿下外骨骼重力势能与上肢各关节转角间的函数关系。通过构型分析,可知外骨骼机构的第二主动关节主要完成肩关节前屈/后伸的康复训练,该关节受重力矩影响最为显著,因此,需对该主动关节进行重力平衡。在给定的上肢运动空间内,在外骨骼中添加零初长弹簧单元,以总势能波动最小为目标,建立重力平衡模型,对弹簧参数进行优化分析。进一步,对重力平衡模型进行数值仿真,结果表明零初长弹簧单元对外骨骼机构具有较好的平衡效果。
        For patients with the upper limb dyskinesia,the rehabilitation exoskeletons are applied in the rehabilitation training of shoulder and elbow joint.Because of the floating property of the glenohumeral joint and the inevitable wear error,it is difficult to keep the axes of the exoskeleton aligning with human axes in real time.Besides,the additional forces/moments caused in the connection interface reduce the training effect and the wear comfort.To eliminate the additional forces/moments,an adaptive rehabilitation exoskeleton with the configuration 4 R3 P2 R is proposed,and relevant inverse position analysis and the gravity balance optimization are completed for the exoskeleton.The configurations PPRRRP and PRRR are adopted in the exoskeleton for the glenohumeral joint and the elbow joint,respectively.The sub-chain PPRRRP and the glenohumeral joint form a 3-DOF human-machine chain with proper DOFs.Similarly,the sub-chain PRRR and the elbow joint form a plane 2-DOF human-machine chain.Based on the exoskeleton configuration,the kinematics model of the human-machine chain is established and the results of the inverse position are solved.The function relationship between the gravitational potential energy of the exoskeleton and the rotation angles of the upper extremity is derived at the any posture.The configuration analysis shows that the flexion/extension of the glenohumeral joint is driven by the second active joint.The driven torque of this active joint is dominated by the gravities of the rest joints.Hence,the gravity balance should be applied to the second active joint.In the given work space of the upper limb,a zero-free-length spring is added into the exoskeleton.The gravity balance model of the spring is established and the relevant parameters are optimized on account of the minimum change of the total potential energy in the exoskeleton.Furthermore,a numerical simulation of the gravity balance model is completed and the results show that the exoskeleton possesses better balance ability.
引文
[1]Luo Yungyu,Li Jinquan,Wang Jianmei,et al.Gravity balance design for cobot[J].Robot,2006,28(5):540-543.[罗杨宇,李金泉,王健美,等.人机合作机器人重力平衡设计[J].机器人,2006,28(5):540-543.]
    [2]Song Yimin,Wang Xiaoli,Lian Binbin,et al.Gravity compensation strategy of a 1T2R parallel manipulator[J].Journal of Tianjin University(Science and Technology),2015,48(7):596-604.[宋轶民,王晓莉,连宾宾,等.一种1T2R卧式布局并联机构的重力补偿策略[J].天津大学学报(自然科学与工程技术版),2015,48(7):596-604.]
    [3]Lin P Y,Shieh W B,Chen D Z.A stiffenss matrix approach for the design of statically balanced planar articulated manipulators[J].Mechanism and Machine Theory,2010,45(12):1877-1891.
    [4]Dunning A G,Herder J L.A close-to-body 3-spring configuration for gravity balancing of the arm[C]//IEEE International Conference on Rehabilitation Robotics,Piscataway:IEEE,2015:464-469.
    [5]Arakelian V.Gravity compensation in robotics[J].Advanced Robotics,2016,30(2):79-96.
    [6]Lin P Y,Shieh W B,Chen D Z.A theoretical study of weight-balanced mechanisms for design of spring assistive mobile arm support(MAS)[J].Mechanism and Machine Theory,2013,61(1):156-167.
    [7]Dubey V N,Agrawal S K.Study of an upper arm exoskeleton for gravity balancing and minimization of transmitted forces[J].Proceedings of the Institution of Mechanical Engineers Part H Journal of Engineering in Medicine,2011,225(11):1025-1035.
    [8]Fattah A,Agrawal S K.Gravity balancing of a human leg using an external orthosis[C]//International Conference on Robotics and Automation,Piscataway:IEEE,2007:3755-3760.
    [9]Herder J L.Development of a statically balanced arm support:ARMON[C]//International Conference on Rehabilitation Robotics,Piscataway:IEEE,2005:281-286.
    [10]Lenzo B,Fontana M,Marcheschi S,et al.Trackhold:a novel passive arm-support device[J].Journal of Mechanisms and Robotics,2016,8(2):1-8.
    [11]Agrawal S K,Fattah A.Theory and design of an orthotic device for full or partial gravity-balancing of a human leg during motion[J].IEEE Trans Neural System Rehabilitation Engineering,2004,12(2):157-165.
    [12]Wu Q,Wang X.Design of a gravity balanced upper limb exoskeleton withbowden cable actuators[J].IFAC Proceedings Volumes,2013,46(5):678-683.
    [13]Wu Qingcong,Wang Xingsong,Wu Hongtao,et al.Reserch on the gravity balance characteristics of an upper limb rehabilitation exoskeleton[J].Robot,2017,39(1):81-88.[吴青聪,王兴松,吴洪涛,等.上肢康复外骨骼重力平衡特性研究[J].机器人,2017,39(1):81-88.]
    [14]Rahman T,Sample W,Jayakumar S,et al.Passive exoskeletons for assisting limb movement[J].Journal of Rehabilitation Research&Development,2006,43(5):583-590.
    [15]Cheng Z,Foong S.Towards a multi-DOF passive balancing mechanism for upper limbs[C]//International Conference on Rehabilitation Robotics,Piscataway:IEEE,2015:508-513.
    [16]Nef T,Guidali M,Riener R.ARMinIII-arm therapy exoskeleton with an ergonomic shoulder actuation[J].Applied Bionics and Biomechanics,2009,6(2):127-142.
    [17]LI Jianfeng,Yuan Shuzheng.Jacobian matrix and kinematic dexterity analysis of human upper limb motion[J].Journal of Shanghai Jiaotong University,2014,48(2):173-180.[李剑锋,袁树峥.人体上肢运动的雅克比矩阵与灵活性分析[J].上海交通大学学报,2014,48(2):173-180.]
    [18]Li J F,Zhang Z Q,Tao C J,et al.A number synthesis method of the self-adapting upper-limb rehabilitation exoskeletons[J].International Journal of Advanced Robotic Systems,2017,14(3):1-14.
    [19]Zhang Leiyu,Li Jianfeng,Liu Junhui,et al.Design and human-machine compatibility analysis of Co-Exos for upperlimb rehabilitation[J].Journal of Mechanical Engineering,2018,54(5):19-28.[张雷雨,李剑峰,刘均辉,等.上肢康复外骨骼的设计与人机相容性分析[J].机械工程学报,2018,54(5):19-28.]
    [20]Klopcar N,Lenarcic J.Bilateral and unilateral shoulder girdle kinematics during humeral elevation[J].Clinical Biomechanics,2006,2 1(1):20-26.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700