A Novel Visible-light-responsive Photocatalyst Bi_(1.5)Cr_(0.5)WO_6 with Suitable Bandgap Structure and Its Application in Water Decontamination
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:A Novel Visible-light-responsive Photocatalyst Bi_(1.5)Cr_(0.5)WO_6 with Suitable Bandgap Structure and Its Application in Water Decontamination
  • 作者:谢丽燕 ; 刘平 ; 黄丽婷 ; 王万军 ; 黄建辉
  • 英文作者:XIE Li-Yan;LIU Ping;HUANG Li-Ting;WANG Wan-Jun;HUANG Jian-Hui;Fujian Provincial Key Laboratory of Ecology-toxicological Effects & Control for Emerging Contaminants, Key Laboratory of Ecological Environment and Information Atlas in Fujian Provincial University, College of Environmental and Biological Engineering, Putian University;State Key Laboratory of Photocatalysis on Energy and Environment,College of Chemistry, Fuzhou University;Institute of Environmental Health and Pollution Control, School of Environmental Science and Engineering, Guangdong University of Technology;
  • 英文关键词:tungsten acid bismuth chromium;;visible-light response;;photocatalysis;;water decontamination;;malachite green
  • 中文刊名:JGHX
  • 英文刊名:结构化学(英文版)
  • 机构:Fujian Provincial Key Laboratory of Ecology-toxicological Effects & Control for Emerging Contaminants, Key Laboratory of Ecological Environment and Information Atlas in Fujian Provincial University, College of Environmental and Biological Engineering, Putian University;State Key Laboratory of Photocatalysis on Energy and Environment,College of Chemistry, Fuzhou University;Institute of Environmental Health and Pollution Control, School of Environmental Science and Engineering, Guangdong University of Technology;
  • 出版日期:2019-06-15
  • 出版单位:Chinese Journal of Structural Chemistry
  • 年:2019
  • 期:v.38;No.296
  • 基金:financially supported by the Natural Science Foundation of Fujian province(2016J05042,2015J01057,2018J01439);; Open Fund of State Key Laboratory of Photocatalysis on Energy and Environment(SKLPEE-KF201505);; Scientific Project of Putian Science and Technology Bureau(2016S1001);; Science and Technology Project of Fujian Provincial Department of Education(JA15444);; the Projects of Putian University(2015065,2015081);; Program for New Century Excellent Talents in Fujian Province University
  • 语种:英文;
  • 页:JGHX201906009
  • 页数:11
  • CN:06
  • ISSN:35-1112/TQ
  • 分类号:87-97
摘要
Integrating the advantages of Bi and Cr elements in the bandgap engineering of metal oxides, a visible-light-responsive photocatalyst Bi_(1.5)Cr_(0.5)WO_6 is successfully constructed and initially applied in water decontamination. The combination of UV-vis diffuses reflectance and the Mott-Schottky curve from electrochemical testing can be used to determine the conduction band and valence band of Bi_(1.5)Cr_(0.5)WO_6 to be about –1.26 and 1.42 V, respectively. The location of energy band structure indicates that the superoxide free radical can be produced in Bi_(1.5)Cr_(0.5)WO_6 photocatalytic system without hydroxyl group. This speculation is also confirmed by ESR experiment and active radical species scavenging experiments. In addition, the best photocatalytic performance of Bi_(1.5)Cr_(0.5)WO_6 obtained under 180 ℃ is attributed to the smallest impedance and the strongest electronic migration capability.
        Integrating the advantages of Bi and Cr elements in the bandgap engineering of metal oxides, a visible-light-responsive photocatalyst Bi_(1.5)Cr_(0.5)WO_6 is successfully constructed and initially applied in water decontamination. The combination of UV-vis diffuses reflectance and the Mott-Schottky curve from electrochemical testing can be used to determine the conduction band and valence band of Bi_(1.5)Cr_(0.5)WO_6 to be about –1.26 and 1.42 V, respectively. The location of energy band structure indicates that the superoxide free radical can be produced in Bi_(1.5)Cr_(0.5)WO_6 photocatalytic system without hydroxyl group. This speculation is also confirmed by ESR experiment and active radical species scavenging experiments. In addition, the best photocatalytic performance of Bi_(1.5)Cr_(0.5)WO_6 obtained under 180 ℃ is attributed to the smallest impedance and the strongest electronic migration capability.
引文
(1)Kudo,A.;Miseki,Y.Heterogeneous photocatalyst materials for water splitting.Chem.Soc.Rev.2009,38,253-278.
    (2)Radha,R.;Srinivasan,A.;Manimuthu,P.;Balakumar,S.Tailored sunlight driven nano-photocatalyst:bismuth iron tungstate(BiFeWO6).J.Mater.Chem.C 2015,3,10285-10292.
    (3)Fu,H.;Pan,C.;Yao,W.;Zhu,Y.Visible-light-induced degradation of rhodamine B by nanosized Bi2WO6.J.Phys.Chem.B 2005,109,22432-22439.
    (4)Kudo,A.;Omori,K.;Kato,H.A novel aqueous process for preparation of crystal form-controlled and highly crystalline BiVO4 powder from layered vanadates at room temperature and its photocatalytic and photophysical properties.J.Am.Chem.Soc.1999,121,11459-11467.
    (5)Yao,W.F.;Wang,H.;Xu,X.H.;Zhou,J.T.;Yang,X.N.;Zhang,Y.;Shang,S.X.Photocatalytic property of bismuth titanate Bi2Ti2O7.Appl.Catal.A:Gen.2004,259,29-33.
    (6)Murugesan,S.;Huda,M.N.;Yan,Y.;Al-Jassim,M.M.;Subramanian,V.Band-engineered bismuth titanate pyrochlores for visible light photocatalysis.J.Phys.Chem.C 2010,114,10598-10605.
    (7)Huang,H.;He,Y.;Du,X.;Chu,P.K.;Zhang,Y.A general and facile approach to heterostructured core/shell BiVO4/BiOI p-n junction:room-temperature in situ assembly and highly boosted visible-light photocatalysis.ACS Sustain.Chem.Eng.2015,3,3262-3273.
    (8)Feng,W.;Weng,S.;Zheng,Z.;Fang,Z.;Liu,P.1Rational design of a charge shunt:modification upon crystal facet engineering of semiconductor photocatalysts.Chem.Commun.2015,51,11186-11189.
    (9)Zhou,Y.;Tian,Z.;Zhao,Z.;Liu,Q.;Kou,J.;Chen,X.;Gao,J.;Yan,S.;Zou,Z.High-yield synthesis of ultrathin and uniform Bi2WO6 square nanoplates benefitting from photocatalytic reduction of CO2 into renewable hydrocarbon fuel under visible light.ACS Appl.Mater.Inter.2011,3,3594-3601.
    (10)Zhang,C.;Zhu,Y.Synthesis of square Bi2WO6 nanoplates as high-activity visible-light-driven photocatalysts.Chem.Mater.2005,17,3537-3545.
    (11)Liang,S.;Wang,J.;Wu,X.;Zhu,S.;Wu,L.Phase transformation synthesis of a new Bi2SeO5 flower-like microsphere for efficiently photocatalytic degradation of organic pollutants.Catal.Today 2018.
    (12)Chen,W.;Gao,W.;Xia,Y.;Liang,S.;Bi,J.;Zhou,L.;Wu,L.;Liu,M.Low-temperature synthesis and visible light-driven photocatalytic activity of Bi6Ti3WO18 nanosheet photocatalyst.J.Alloy.Compd.2017,718,471-477.
    (13)Tian,N.;Zhang,Y.;Huang,H.;He,Y.;Guo,Y.Influences of Gd substitution on the crystal structure and visible-light-driven photocatalytic performance of Bi2WO6.J.Phys.Chem.C 2014,118,15640-15648.
    (14)Ramanan,A.;Gopalakrishnan,J.;Rao,C.N.R.Relative stabilities of layered perovskite and pyrochlore structures in transition metal oxides containing trivalent bismuth.J.Solid State Chem.1985,60,376-381.
    (15)Tang,J.;Zou,Z.;Ye,J.Photocatalytic decomposition of organic contaminants by Bi2WO6 under visible light irradiation.Catal.Lett.2004,92,53-56.
    (16)Saison,T.;Chemin,N.;Chanéac,C.;Durupthy,O.;Ruaux,V.;Mariey,L.;Maugé,F.;Beaunier,P.;Jolivet,J.P.Bi2O3,BiVO4,and Bi2WO6:impact of surface properties on photocatalytic activity under visible light.J.Phys.Chem.C 2011,115,5657-5666.
    (17)Saison,T.;Gras,P.;Chemin,N.;Chanéac,C.;Durupthy,O.;Brezová,V.;Colbeau-Justin,C.;Jolivet,J.P.New insights into Bi2WO6 properties as a visible-light photocatalyst.J.Phys.Chem.C 2013,117,22656-22666.
    (18)Huang,H.;Liu,K.;Chen,K.;Zhang,Y.;Zhang,Y.;Wang,S.Ce and F comodification on the crystal structure and enhanced photocatalytic activity of Bi2WO6 photocatalyst under visible light irradiation.J.Phys.Chem.C 2014,118,14379-14387.
    (19)Song,X.C.;Li,W.T.;Huang,W.Z.;Zhou,H.;Yin,H.Y.;Zheng,Y.F.Enhanced photocatalytic activity of cadmium-doped Bi2WO6 nanoparticles under simulated solar light.J.Nanopart.Res.2015,17,134-144.
    (20)Rez,I.S.Multipurpose noncentrosymmetric laser crystals.Sov.J.Quantum Electron.1986,16,1364-1369.
    (21)Fuerte,A.;Hernández-Alonso,M.D.;Maira,A.J.;Martínez-Arias,A.;Fernández-García,M.;Conesa,J.C.;Soria,J.Visible light-activated nanosized doped-TiO2 photocatalysts.Chem.Commun.2001,24,2718-2719.
    (22)Kato,H.;Kudo,A.Visible-light-response and photocatalytic activities of TiO2 and SrTiO3 photocatalysts codoped with antimony and chromium.J.Phys.Chem.B 2002,106,5029-5034.
    (23)Wang,D.;Zou,Z.;Ye,J.Photocatalytic water splitting with the Cr-doped Ba2In2O5/In2O3 composite oxide semiconductors.Chem.Mater.2005,17,3255-3261.
    (24)Ramanan,A.;Subbanna,G.N.;Gopalakrishnan,J.;Rao,C.N.R.Novel phases and structural transitions in chromium and iron substituted bismuth tungstates,Bi2-xMxWO6(M=Cr,Fe).Rev.Chim.Min.1983,20,576-587.
    (25)Cho,I.S.;Kwak,C.H.;Kim,D.W.;Lee,S.;Hong,K.S.Photophysical,photoelectrochemical,and photocatalytic properties of novel SnWO4 oxide semiconductors with narrow band gaps.J.Phys.Chem.C 2009,113,10647-10653.
    (26)Li,Z.;Dong,T.;Zhang,Y.;Wu,L.;Li,J.;Wang,X.;Fu,X.Studies on In(OH)ySz solid solutions:syntheses,characterizations,electronic structure,and visible-light-driven photocatalytic activities.J.Phys.Chem.C 2007,111,4727-4733.
    (27)huang,J.;Tian,Q.;Lin,S.;Yang,W.;Chen,L.;Liu,P.Precursor morphology-controlled formation of perovskites CaTiO3 and their photo-activity for As(Ⅲ)removal.Appl.Catal.B:Environ.2014,156-157,108-115.
    (28)Xie,L.;Wang,J.;Hu,Y.;Zhu,S.;Zheng,Z.;Weng,S.;Liu,P.ZrO2-incorporated Bi6O6(OH)3(NO3)3·1.5H2O with superior photocatalytic activity for degradation of malachite green.RSC Adv.2012,2,9881-9886.
    (29)Xie,L.;Wang,J.;Hu,Y.;Zheng,Z.;Weng,S.;Liu,P.;Shi,X.;Wang,D.Template-free microwave-assisted hydrothermal synthesis and photocatalytic performance of Bi6O6(OH)3(NO3)3·1.5H2O nanosheets.Mater.Chem.Phys.2012,136,309-312.
    (30)Zhang,N.;Zhang,Y.;Pan,X.;Fu,X.;Liu,S.;Xu,Y.J.Assembly of Cd S nanoparticles on the two-dimensional graphene Scaffold as visible-light-driven photocatalyst for selective organic transformation under ambient conditions.J.Phys.Chem.C 2011,115,23501-23511.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700