农用纳米二氧化硅载体对作物生长影响的研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Study on the Crop Growth Effect of Nanosilica Particles as Agricultural Carriers
  • 作者:杨岭 ; 袁林喜 ; 张学燕
  • 英文作者:YANG Ling;YUAN Linxi;ZHANG Xueyan;Suzhou Polytechnic Institute of Agriculture;Institute of Advanced Technology, University of Science and Technology of China;Otto H.York Center for Environmental Engineering and Science, New Jersey Institute of Technology;
  • 关键词:纳米材料 ; 二氧化硅 ; 植物毒性 ; 表面吸附 ; FTIR
  • 英文关键词:nanomaterials;;silica;;phytotoxicity;;surface adsorption;;FTIR
  • 中文刊名:FJKS
  • 英文刊名:Environmental Science & Technology
  • 机构:苏州农业职业技术学院;中国科学技术大学先进技术研究院功能农业工程中心联合实验室;Otto H.York Center for Environmental Engineering and Science New Jersey Institute of Technology;
  • 出版日期:2019-02-15
  • 出版单位:环境科学与技术
  • 年:2019
  • 期:v.42
  • 基金:苏州农业职业技术学院特色专业建设工程资助项目(苏农院(2017)29号)
  • 语种:中文;
  • 页:FJKS201902004
  • 页数:7
  • CN:02
  • ISSN:42-1245/X
  • 分类号:31-37
摘要
近年来,纳米二氧化硅在农业中的应用越来越广泛,评价纳米二氧化硅对农作物生长的影响日益迫切。该文采用了经典的幼苗根伸长试验,研究了纳米二氧化硅(平均尺度14.0 nm,NP-Si)对卷心菜、胡萝卜和黄瓜3种蔬菜生长的影响;同时研究了亚微米二氧化硅(MP-Si,平均尺度为667.6 nm)对蔬菜生长的影响以作对比。结果显示,NP-Si对这3种蔬菜幼苗的生长均具有促进作用,且在脱离了NP-Si的接触后,此促进作用在实验周期内没有逆转;而MP-Si对蔬菜幼苗的生长无影响。多环芳烃菲的吸附将NP-Si对这3种蔬菜幼苗的促生长作用改变为抑制作用。FTIR的测定表明,多环芳烃菲的吸附前后,NP-Si的红外光谱有所不同。研究结果表明:(1)NP-Si对农作物生长的影响不仅仅来源于其纳米的尺度,还与其表面吸附的物质有关;(2)纳米材料表面的吸附作用及吸附的物质是在纳米材料对农作物生长影响的研究中必须考虑的重要因素。
        Nanosilica has been used widely in agriculture in recent years. It is increasingly urgent to evaluate the effect of nanosilica on crops. This paper studied effects of nanosilica with average size of 14.0 nm(NP-Si) on cabbage(B. oleracea),carrot(D. carota) and cucumber(C. sativus) using root elongation test. Effects of submicron silica with average size 667.6 nm(MP-Si) were also studied. The results show that NP-Si has an enhancement effect on the seedling growth of the three vegetable crops. The enhancement effect is irreversible under the experiment conditions. MP-Si at the same time has no effect on the seedling growth. The coating of phenanthrene on NP-Si changes the enhancement effect into an inhibition effect. And FTIR measurements indicate that the spectra of NP-Si are different before or after the coating of phenanthrene. It is suggested that the effect of NP-Si on crops depends on both its nanoscale size and its surface adsorbed chemical species; and the surface adsorption capability and the surface adsorbed chemical species should both be considered when studying phytotoxicity of nanomaterials.
引文
[1] Phares D J, Rhoads K P, Johnston M V, et al. Size-resolved ultrafine particle composition analysis 2. Houston[J]. Journal of Geophysical Research Atmospheres, 2003(108):8420.
    [2]余越,陶春,杨海跃,等.介孔二氧化硅纳米粒的制备及其作为不同功能的药物载体研究进展[J].中国新药杂志, 2017,26(16):1906-1912.Yu Yue, Tao Chun, Yang Haiyue, et al. Advances in preparation of mesoporous silica nanoparticles and its use as different functional drug[J]. Chinese Journal of New Drugs,2017,26(16):1906-1912.
    [3]邱鹏超.介孔SiO2多功能纳米复合体系构建及肿瘤诊疗研究[D].长沙:湖南大学, 2014.Qiu Pengchao. Study on the Construction of Multifunctional Nanocomposite System of Mesoporous SiO2and Its Application on Tumor Diagnosis and Treatment[D]. Changsha:Hunan University, 2014.
    [4]王丹丹.介孔二氧化硅纳米微粒共转运Doxorubicin和MDR1-siRNA治疗耐药口腔鳞状细胞癌的研究[D].长春:吉林大学, 2015.Wang Dandan. Study on the Co-transportation of Mesoporous Silica Nanoparticles for Doxorubicin and MDR1-sirna in the Treatment of Drug-resistant Oral Squamous Cell Carcinoma[D]. Changchun:Jilin University, 2015.
    [5]周婕,李艳,罗成.介孔二氧化硅纳米粒的医学应用及安全性研究进展[J].中国新药与临床杂志, 2017,36(3):124-130.Zhou Jie, Li Yan, Luo Cheng. Progress of mesoporous silica nanoparticles in medical applications and their biological safety[J]. Chinese Journal of New Drugs&Clinical Remedies, 2017,36(3):124-130.
    [6]赵婧,杨磊.不同粒径二氧化硅对人脐静脉内皮细胞损伤的比较[J].微量元素与健康研究, 2017,34(4):4-5,9.Zhao Jing, Yang Lei. Comparison of injuries on human umbilical vein endothelial cells imposed by silica with different particle sizes[J]. Studies of Trace Elements and Health,2017,34(4):4-5,9.
    [7] Napierska D, Thomassen L C, Lison D, et al. The nanosilica hazard:another variable entity[J]. Particle and Fibre Toxicology, 2010,7(1):39-39.
    [8]张志玲,高艳荣,邓洋,等.纳米SiO2和纳米TiO2对雄性大鼠生殖毒性的实验研究[J].职业与健康, 2017,33(5):609-612.Zhang Zhiling, Gao Yanrong, Deng Yang, et al. Experimental study of nano-SiO2and nano-TiO2on reproductive toxicity of male rats[J]. Occupation&Health, 2017,33(5):609-612.
    [9] Christen V, Fent K. Silica nanoparticles induce endoplasmic reticulum stress response and activate mitogen activated kinase(MAPK)signaling[J]. Toxicology Reports, 2016, 3:832-840.
    [10] Yang L, Watts D J. Particle surface characteristics may play an important role in phytotoxicity of alumina nanoparticles[J]. Toxicology Letters, 2005,158(2):122-132.
    [11] Aslani F, Bagheri S, Julkapli N M, et al. Effects of engineered nanomaterials on plants growth:an overview[J]. The Scientific World Journal, 2014:641759-641759.
    [12]纳米氧化硅在农业中的应用[DB/OL]. http://china.nowec.com/supply/detail/36068303.html.
    [13] Li Z Z, Xu S A, Wen L X, et al. Controlled release of avermectin from porous hollow silica nanoparticles:I influence of shell thickness on loading efficiency, UV-shielding property and release[J]. Journal of Controlled Release, 2006(111):81-88.
    [14] The United States Environmental Protection Agency(USEPA). Ecological Effects Test Guidelines, OPPTS 850.4200,Seed Germination/Root Elongation Toxicity Test[R]. EPA712-C-96-154, Prevention, Pesticides and Toxic Substances, 1996:7170.
    [15] Wang X, Sun C, Gao S, et al. Validation of germination rate and root elongation as indicator to assess phytotoxicity with Cucumis sativus[J]. Chemosphere, 2001,44:1711-1721.
    [16] Boscolo P R S, Menossi M, Jorge R A. Aluminum-induced oxidative stress in maize[J]. Phytochemistry, 2003,62:181-189.
    [17] Schildknecht P H P A, de Campos Vidal B A. Role for the cell wall in Al3+resistance and toxicity:crystallinity and availability of negative charges[J]. International Archives of Bioscience, 2002:1087-1095.
    [18]陈和生,孙振亚,邵景昌.八种不同来源二氧化硅的红外光谱特征研究[J].硅酸盐通报,2011,30(4):934-937.Chen Hesheng, Sun Zhenya, Shao Jingchang. Investigation on FT-IR spectroscopy for eight different sources of SiO2[J]. Bulletin of Chinese Ceramic Society. 2011,30(4):934-937.
    [19] Yuvakkumar R, Elango V, Rajendran V, et al. Influence of nanosilica powder on the growth of maize crop(Zea mays L.)[J]. International Journal of Green Nanotechnology, 2011,3(3):180-190.
    [20] Siddiqui M H, Alwhaibi M H. Role of nano-SiO2in germination of tomato(Lycopersicum esculentum seeds Mill)[J].Saudi Journal of Biological Sciences, 2014,21(1):13-17.
    [21]许敏,靳伟,林云青,等.纳米有机二氧化硅对土壤-青菜系统六六六迁移的影响[J].安徽农业科学, 2009,37(5):2167-2169.Xu Min, Jin Wei, Lin Yunqing, et al. Effects of organic nano-silica on the migration of hexadecimal in the soil-cabbage system[J]. Journal of Anhui Agricultural Science, 2009,37(5):2167-2169.
    [22] Khiew P, Chiu W, et al. Capping Effect of Palm-oil Based Organometallic Ligand towards the Production of Highly Monodispersed Nanostructured Material[M]. Mandal P K,Jayanthi M. Palm Oil:Nutrition, Uses and Impacts. New York:Nova Science Publishers, 2011:189-219.
    [23] Nadiminti P P, Dong Y D, Sayer C, et al. Nanostructured liquid crystalline particles as an alternative delivery vehicle for plant agrochemicals[J]. ACS Applied Materials and Interfaces, 2013(5):1818–1826.
    [24] Lombi E, Nowack B, Baun A, et al. Evidence for effects of manufactured nanomaterials on crops is inconclusive[J]. Proceedings of the National Academy of Sciences of the United States of America, 2012,109(49):3336.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700