气孔发育机制及其内外调控因子的研究进展
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Advance in stomatal development mechanism and its regulation of external and internal cues
  • 作者:李岩 ; 徐珊珊 ; 王根轩
  • 英文作者:LI Yan;XU Shan-Shan;WANG Gen-Xuan;College of Life Sciences, Zhejiang University;Natural History Research Center,Shanghai Natural History Museum, Shanghai Science & Technology Museum;
  • 关键词:气孔 ; 气孔行为 ; 气孔发育 ; 信号转导 ; 环境调控 ; 植物激素
  • 英文关键词:stomata;;stomatal behavior;;stomtatal development;;signal transduction;;environmental regulation;;phytohormone
  • 中文刊名:SMKX
  • 英文刊名:Chinese Bulletin of Life Sciences
  • 机构:浙江大学生命科学学院;上海科技馆上海自然博物馆自然史研究中心;
  • 出版日期:2018-06-20 15:13
  • 出版单位:生命科学
  • 年:2018
  • 期:v.30;No.230
  • 基金:国家自然科学基金重点项目(31330010);; 浙江省自然科学基金重点项目(LZ13C030001)
  • 语种:中文;
  • 页:SMKX201805002
  • 页数:9
  • CN:05
  • ISSN:31-1600/Q
  • 分类号:5-13
摘要
气孔是植物与外界环境进行气体与水分交换的重要通道,调节着植物的蒸腾与光合作用。在长期进化过程中,植物通过调节气孔行为和气孔发育机制来适应环境变化。不同植物气孔系的形成方式不尽相同,但过程均受到气孔发育信号网络系统的调节作用。近年来关于气孔发育机制的研究层出不穷,现重点综述各类转录因子、信号肽以及环境因子和植物激素对气孔发育的调节作用。该领域的研究为在微观层面揭示植物对环境变化的适应机制提供了科学基础。
        Stomata play important roles in regulating gas and water exchange between plants and the environment, which determine transpiration and photosynthesis. In the process of evolution, land plants have adapted to environmental changes by regulating stomatal behavior and development. Stomatal patterning and development varies among diverse plant groups, while all the forming processes are mediated by series of signaling network. Studies on the mechanism underlying stomatal development have attracted wide academic attention in recent years. In this paper, we discuss how transcriptional factors, peptides, environmental cues and hormones affect stomatal development, so as to provide foundation of scientific research in revealing plant adaptive mechanisms to environmental changes at a molecular level.
引文
[1]郑玉龙,姜春玲,冯玉龙.植物的气孔发生.植物生理学通讯,2005,41:847-50
    [2]Belin C,Thomine S,Schroeder JI.Water balance and the regulation of stomatal movements[M]//Pareek A,Sopory SK,Bohnert HJ,et al.Abiotic stress adaptations in plants:physiological,molecular and genomic foundation.Dordrecht:Springer,2010:283-305
    [3]Hetherington AM,Woodward FI.The role of stomata in sensing and driving environmental change.Nature,2003,424:901-8
    [4]Qu X,Peterson KM,Torii KU.Stomatal development in time:the past and the future.Curr Opin Genet Dev,2017,45:1-9
    [5]陈亮,侯岁稳.植物气孔发育的分子遗传调控.中国科学:生命科学,2017,47:798-807
    [6]Martin C,Glover BJ.Functional aspects of cell patterning in aerial epidermis.Curr Opin Plant Biol,2007,10:70-82
    [7]Casson SA,Hetherington AM.Environmental regulation of stomatal development.Curr Opin Plant Biol,2010,13:90-5
    [8]Casson SA,Gray JE.Influence of environmental factors on stomatal development.New Phytol,2008,178:9-23
    [9]崔国新,韩宝达,赵潇男,等.气孔发育及其调控.植物生理学报,2012,48:829-36
    [10]马书荣,阎秀峰,陈伯林,等.遮光条件下裂叶沙参和泡沙参气孔行为的对比研究.植物研究,2000,20:63-8
    [11]Melotto M,Underwood W,Koczan J,et al.Plant stomata function in innate immunity against bacterial invasion.Cell,2006,126:969-80
    [12]Acharya BR,Assmann SM.Hormone interactions in stomatal function.Plant Mol Biol,2009,69:451-62
    [13]Li Y,Xu SS,Gao J,et al.Bacillus subtilis-regulation of stomatal movement and instantaneous water use efficiency in Vicia faba.Plant Growth Regul,2016,78:43-55
    [14]Li Y,Xu SS,Gao J,et al.Glucose-and mannose-induced stomatal closure is mediated by ROS production,Ca2+and water channel in Vicia faba.Physiol Plant,2016,156:252-61
    [15]Li Y,Xu SS,Gao J,et al.Chlorella induces stomatal closure via NADPH oxidase-dependent ROS production and its effects on instantaneous water use efficiency in Vicia faba.PLoS One,2014,9:e93290
    [16]Gao J,Wang N,Wang GX.Saccharomyces cerevisiaeinduced stomatal closure mainly mediated by salicylhydroxamic acid-sensitive peroxidases in Vicia faba.Plant Physiol Biochem,2013,65:27-31
    [17]Khokon MA,Hossain MA,Munemasa S,et al.Yeast elicitor-induced stomatal closure and peroxidase-mediated ROS production in Arabidopsis.Plant Cell Physiol,2010,51:1915-21
    [18]Koers S,Guzel-Deger A,Marten I,et al.Barley mildew and its elicitor chitosan promote closed stomata by stimulating guard-cell S-type anion channels.Plant J,2011,68:670-80
    [19]Wang XQ,Ullah H,Jones AM,et al.G protein regulation of ion channels and abscisic acid signaling in Arabidopsis guard cells.Science,2001,292:2070-2
    [20]Mustilli AC,Giraudat J.Arabidopsis OST1 protein kinase mediates the regulation of stomatal aperture by abscisic acid and acts upstream of reactive oxygen species production.Plant Cell,2002,14:3089-99
    [21]Assmann SM.OPEN STOMATA1 opens the door to ABAsignaling in Arabidopsis guard cells.Trends Plant Sci,2003,8:151-3
    [22]Koler B,Hills A,Blatt MR.Control of guard cell ion channels by hydrogen peroxide and abscisic acid indicates their action through alternate signaling pathways.Plant Physiol,2003,131:385-8
    [23]Mishra G,Zhang W,Deng F,et al.A bifurcating pathway directs abscisic acid effects on stomatal closure and opening in Arabidopsis.Science,2006,312:264-6
    [24]García-Mata C,Lamattina L.Hydrogen sulphide,a novel gasotransmitter involved in guard cell signalling.New Phytol,2010,188:977-84
    [25]Schroeder JI,Allen GJ,Hugouvieux V,et al.Guard cell signal transduction.Annu Rev Plant Physiol Plant Mol Biol,2001,52:627-58
    [26]Fan LM,Zhao Z,Assmann SM.Guard cells:a dynamic signaling model.Curr Opin Plant Biol,2004,7:537-46
    [27]Royer DL.Stomatal density and stomatal index as indicators of atmospheric CO2 concentration.Rev Palaeobot Palynol,2001,114:1-28
    [28]Kim TW,Michniewicz M,Bergmann DC,et al.Brassinosteroid regulates stomatal development by GSK3-mediated inhibition of a MAPK pathway.Nature,2012,482:419-22
    [29]Le J,Liu XG,Yang KZ,et al.Auxin transport and activity regulate stomatal patterning and development.Nat Commun,2014,5:3090
    [30]韩笑.茉莉酸信号途径调控拟南芥子叶下表皮气孔发育的研究[D].昆明:云南大学,2015
    [31]Pillitteri LJ,Torii KU.Mechanisms of stomatal development.Annu Rev Plant Biol,2012,63:591-614
    [32]Geisler M,Nadeau J,Sack FD.Oriented asymmetric divisions that generate the stomatal spacing pattern in Arabidopsis are disrupted by the too many mouths mutation.Plant Cell,2000,12:2075-86
    [33]Heim MA,Jakoby M,Werber M,et al.The basic helixloophelix transcription factor family in plants:a genomewide study of protein structure and functional diversity.Mol Biol Evol,2003,20:735-47
    [34]Liu T,Ohashi-Ito K,Bergmann DC.Orthologs of Arabidopsis thaliana stomatal bHLH genes and regulation of stomatal development in grasses.Development,2009,136:2265-76
    [35]Macalister CA,Ohashiito K,Bergmann DC.Transcription factor control of asymmetric cell divisions that establish the stomatal lineage.Nature,2007,445:537-40
    [36]Dong J,Macalister CA,Bergmann DC.BASL controls asymmetric cell division in Arabidopsis.Cell,2009,137:1320-30
    [37]Nadeau JA,Sack FD.Stomatal development:cross talk puts mouths in place.Trends Plant Sci,2003,8:294-9
    [38]Pillitteri LJ,Al E.Termination of asymmetric cell division and differentiation of stomata.Nature,2007,445:501-5
    [39]Serna L,Fenoll C.Stomatal development in Arabidopsis:how to make a functional pattern.Trends Plant Sci,2000,5:458-60
    [40]Takazoe M,Tanaka T,Kondo K,et al.Arabidopsis FAMAcontrols the final proliferation/differentiation switch during stomatal development.Plant Cell,2006,18:2493-505
    [41]Lai LB,Nadeau JA,Lucas J,et al.The Arabidopsis R2R3MYB proteins FOUR LIPS and MYB88 restrict divisions late in the stomatal cell lineage.Plant Cell,2005,17:2754-67
    [42]Kanaoka MM,Pillitteri LJ,Fujii H,et al.SCREAM/ICE1and SCREAM2 specify three cell-state transitional steps leading to Arabidopsis stomatal differentiation.Plant Cell,2008,20:1775-85
    [43]Vanneste S,Coppens F,Lee EK,et al.Developmental regulation of CYCA2s contributes to tissue-specific proliferation in Arabidopsis.EMBO J,2011,30:3430-41
    [44]Lin G,Zhang L,Han Z,et al.A receptor-like protein acts as a specificity switch for the regulation of stomatal development.Gene Dev,2017,31:927-38
    [45]Shpak ED,Mcabee JM,Pillitteri LJ,et al.Stomatal patterning and differentiation by synergistic interactions of receptor kinases.Science,2005,309:290-3
    [46]Hara K,Kajita R,Torii KU,et al.The secretory peptide gene EPF1 enforces the stomatal one-cell-spacing rule.Gene Dev,2007,21:1720-5
    [47]Hara K,Yokoo T,Kajita R,et al.Epidermal cell density is autoregulated via a secretory peptide,EPIDERMALPATTERNING FACTOR 2 in Arabidopsis leaves.Plant Cell Physiol,2009,50:1019-31
    [48]Abrash EB,Bergmann DC.Regional specification of stomatal production by the putative ligand CHALLAH.Development,2010,137:447-55
    [49]Kondo T,Kajita R,Miyazaki A,et al.Stomatal density is controlled by a mesophyll-derived signaling molecule.Plant Cell Physiol,2010,51:1-8
    [50]Horst RJ,Fujita H,Jin SL,et al.Molecular framework of a regulatory circuit initiating two-dimensional spatial patterning of stomatal lineage.PLoS Genetics,2015,11:e1005374
    [51]Qi X,Han S,Dang JH,et al.Autocrine regulation of stomatal differentiation potential by EPF1 and ERECTALIKE1ligand-receptor signaling.Elife,2017,6:e24102
    [52]Lee JS,Hnilova M,Maes M,et al.Competitive binding of antagonistic peptides fine-tunes stomatal patterning.Nature,2015,522:439-43
    [53]Rychel AL,Peterson KM,Torii KU.Plant twitter:ligands under 140 amino acids enforcing stomatal patterning.JPlant Res,2010,123:275-80
    [54]Von GU,Berger D,Altmann T.The subtilisin-like serine protease SDD1 mediates cell-to-cell signaling during Arabidopsis stomatal development.Plant Cell,2002,14:1527-39
    [55]Berger D,Altmann T.A subtilisin-like serine protease involved in the regulation of stomatal density and distribution in Arabidopsis thaliana.Gene Dev,2000,14:1119-31
    [56]Bergmann DC,Lukowitz W,Somerville CR.Stomatal development and pattern controlled by a MAPKK kinase.Science,2004,304:1494-7
    [57]Wang H,Ngwenyama N,Liu Y,et al.Stomatal development and patterning are regulated by environ-mentally responsive mitogen-activated protein kinase in Arbidopsis.Plant Cell,2007,19:63-73
    [58]Lampard GR,Lukowitz W,Ellis BE,et al.Novel and expanded roles for MAPK signaling in Arabidopsis stomatal cell fate revealed by cell type-specific manipulations.Plant Cell,2009,21:3506-17
    [59]Asai T,Tena G,Plotnikova J,et al.MAP kinase signalling cascade in Arabidopsis innate immunity.Nature,2002,415:977-83
    [60]Zhang Y,Wang P,Shao W,et al.The BASL polarity protein controls a MAPK signaling feedback loop in asymmetric cell division.Dev Cell,2015,33:136-49
    [61]徐坤,邹琦,赵燕.土壤水分胁迫与遮荫对生姜生长特性的影响.应用生态学报,2003,14:1645-8
    [62]Fraser LH,Greenall A,Carlyle C,et al.Adaptive phenotypic plasticity of Pseudoroegneria spicata:response of stomatal density,leaf area and biomass to changes in water supply and increased temperature.Ann Bot,2009,103:769-75
    [63]Madsen E.Effect of CO2-concentration on the morphological,histological and cytological changes in tomato plants.Acta Agr Scand,1973,23:241-6
    [64]Woodward FI.Stomatal numbers are sensitive to increases in CO2 from pre-industrial levels.Nature,1987,327:617-8
    [65]Beerling DJ,Chaloner WG.The impact of atmospheric CO2and temperature change on stomatal density:observations from Quercus robur Lammas leaves.Ann Bot,1993,71:231-5
    [66]Lin J,Hu Y.Structural response of soybean leaf to elevated CO2 concentration.Acta Bot Sin,1996,38:31-4
    [67]杨惠敏,王根轩.干旱和CO2浓度升高对干旱区春小麦气孔密度及分布的影响.植物生态学报,2001,25:312-6
    [68]Gray JE,Holroyd GH,Lee FMVD,et al.The HICsignalling pathway links CO2 perception to stomatal development.Nature,2000,408:713-6
    [69]Zeiger E.The biology of stomatal guard cells.Plant Biol,1983,34:441-74
    [70]Kolla V,Vavasseur A,Raghavendra A.Hydrogen peroxide production is an early event during bicarbonate induced stomatal closure in abaxial epidermis of Arabidopsis.Planta,2007,225:1421-9
    [71]Oberbauer SF,Strain BR.Effects of canopy position and irradiance on the leaf physiology and morphology of Pentaclethra macroloba(Mimosaceae).Am J Bot,1986,73:409-16
    [72]蔡志全,齐欣,曹坤芳.七种热带雨林树苗叶片气孔特征及其可塑性对不同光照强度的响应.应用生态学报,2004,15:201-4
    [73]戴凌峰.四种灌木树种的耐荫性研究[D].北京:北京林业大学,2007
    [74]何若天,吕成群.若干阔叶树树冠各层叶气孔密度及光照条件对气孔密度的影响.基因组学与应用生物学,1995,14:311-6
    [75]王秀玲,赵明,王启现,等.玉米不同基因型气孔特征和叶温差的研究.华北农学报,2004,19:71-4
    [76]张大鹏.水稻叶片气孔的研究Ⅱ.不同生态条件下的气孔动态.福建农林大学学报(自然版),1989,18:302-7
    [77]Schoch PG,Zinsou C,Sibi M.Dependence of stomatal index on environmental factors during stomatal differentiation in leaves of Vigna sinensis L..J Exp Bot,1980,31:1211-6
    [78]Casson SA,Franklin KA,Gray JE,et al.Phytochrome Band PIF4 regulate stomatal development in response to light quantity.Curr Biol,2009,19:229-34
    [79]Klermund C,Ranftl Q L,Diener J,et al.LLM-domain B-GATA transcription factors promote stomatal development downstream of light signaling pathways in Arabidopsis thaliana hypocotyls.Plant Cell,2016,28:646-60
    [80]Serna L.Crosstalk among hormones and signaling networks during stomatal development in Arabidopsis hypocotyls.AIMS Mol Sci,2016,3:550-9
    [81]Kang CY,Lian HL,Wang FF,et al.Cryptochromes,phytochromes,and COP1 regulate light-controlled stomatal development in Arabidopsis.Plant Cell,2009,21:2624-41
    [82]Boetsch J,Chin J,Ling M,et al.Elevated carbon dioxide affects the patterning of subsidiary cells in Tradescantia stomatal complexes.J Exp Bot,1996,47:925-31
    [83]Zhou YM,Jiang XJ,Schau M,et al.Ten-year exposure to elevated CO2 increases stomatal number of Pinus koraiensis and P.sylvestriformis needles.Eur J Forest Res,2013,132:899-908
    [84]Engineer CB,Ghassemian M,Anderson JC,et al.Carbonic anhydrases,EPF2 and a novel protease mediate CO2 control of stomatal development.Nature,2014,513:246-50
    [85]Kazama H,Ricci JE,Herndon J,et al.Induction of immunological tolerance by apoptotic cells requires caspase-dependent oxidation of high-mobility group box-1 protein.Immunity,2008,29:21-32
    [86]Saibo NJ,Vriezen WH,Beemster GT,et al.Growth and stomata development of Arabidopsis hypocotyls are controlled by gibberellins and modulated by ethylene and auxins.Plant J,2003,33:989-1000
    [87]Kim TH,Bomer M,Hu H,et al.Guard cell signal transduction network:advances in understanding abscisic acid,CO2,and Ca2+signaling.Annu Rev Plant Biol,2010,61:561-91
    [88]Balcerowicz M,Ranjan A,Rupprecht L,et al.Auxin represses stomatal development in dark-grown seedlings via Aux/IAA proteins.Development,2014,141:3165-76
    [89]Gudesblat GE,Schneider-PizońJ,Betti C,et al.SPEECHLESS integrates brassinosteroid and stomata signaling pathways.Nat Cell Biol,2012,14:548-54
    [90]Wang M,Yang K,Le J.Organ-specific effects of brassinosteroids on stomatal production coordinate with the action of TOO MANY MOUTHS.J Integr Plant Biol,2015,57:247-55
    [91]González D,Fuentes S,Serna L.Interactions among gibberellins,brassinosteroids and genes regulate stomatal development in the Arabidopsis hypocotyl.Int J Dev Biol,2017,61:383-7
    [92]de Macos A,Houbaert A,Trivino M,et al.A mutation in the bHLH domain of the SPCH transcription factor uncovers a BR-dependent mechanism for stomatal development.Plant Physiol,2017,174:823-42
    [93]Zhang JY,He SB,Li L,et al.Auxin inhibits stomatal development through MONOPTEROS repression of a mobile peptide gene STOMAGEN in mesophyⅡ.Proc Natl Acad Sci USA,2014,111:E3015-23
    [94]Caine RS,Chater CC,Kamisugi Y,et al.An ancestral stomatal patterning module revealed in the non-vascular land plant Physcomitrella patens.Development,2016,143:3306-14
    [95]Chater CC,Caine RS,Tomek M,et al.Origin and function of stomata in the moss Physcomitrella patens.Nat Plants,2016,2:16179-85
    [96]Caspar CC,Chater CC,Robert S,et al.Origins and evolution of stomatal development.Plant Physiol,2017,174:624-38
    [97]Raissig MT,Abrash E,Bettadapur A,et al.Grasses use an alternatively wired bHLH transcription factor network to establish stomatal identity.Proc Natl Acad Sci USA,2016,113:8326-31
    [98]Hughes J,Hepworth C,Dutton C,et al.Reducing stomatal density in barley improves drought tolerance without impacting on yield.Plant Physiol,2017,174:776-87
    [99]Yin X,Biswal AK,Dionora J,et al.CRISPR-Cas9 and CRISPR-Cpf1 mediated targeting of a stomatal developmental gene EPFL9 in rice.Plant Cell Rep,2017,36:745-57

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700