平面壁面射流风场作用下建筑物表面风压数值模拟
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Numerical Simulation of Mean Wind Pressure Distribution on Building Surface under Plane Wall Jet Wind Field
  • 作者:钟永力 ; 晏致涛 ; 游溢 ; 赵爽
  • 英文作者:ZHONG Yongli;YAN Zhitao;YOU Yi;ZHAO Shuang;School of Civil Engineering,Chongqing University;School of Civil Engineering and Architecture,Chongqing University of Science and Technology;State Grid Xinjiang Electric Power Company Electric Power Research Institute;
  • 关键词:下击暴流 ; 平面壁面射流 ; 数值模拟 ; 雷诺应力模型 ; 风压系数
  • 英文关键词:downburst;;plane wall jet;;numerical simulation;;Reynolds stress model;;wind pressure coefficient
  • 中文刊名:HNDX
  • 英文刊名:Journal of Hunan University(Natural Sciences)
  • 机构:重庆大学土木工程学院;重庆科技学院建筑工程学院;国网新疆电力公司电力科学研究院;
  • 出版日期:2019-01-25
  • 出版单位:湖南大学学报(自然科学版)
  • 年:2019
  • 期:v.46;No.301
  • 基金:国家自然科学基金资助项目(51478069,51178489);; 重庆市科委项目(CSTC2017JCYJB0210);; 中央高校基本科研业务费专项资金资助项目(106112017CDJXSYY002)~~
  • 语种:中文;
  • 页:HNDX201901005
  • 页数:8
  • CN:01
  • ISSN:43-1061/N
  • 分类号:52-59
摘要
采用平面壁面射流模拟下击暴流的出流段风场,通过协同流模拟下击暴流水平移动,基于计算流体动力学方法,采用雷诺应力模型(RSM)的Stress-Omega模型模拟了稳态下击暴流的平均风剖面,并在风场中建立高层建筑物模型,研究下击暴流风场中高层建筑物表面风压分布特性.结果表明,采用平面壁面射流模型得到的水平速度竖向风剖面与下击暴流理论风剖面以及试验结果吻合较好,壁面射流模型风场中建筑风压分布特征与冲击射流风洞试验一致;迎风面风压系数随着顺流向距离的增加而不断减小,随着射流入流湍流强度的增大而减小.当下击暴流风剖面半高值大于1.45倍建筑物高度时,壁面射流风场中建筑风压分布与大气边界层风场中类似.协同流对结构中下部风压分布影响较大,而风向角对最大风压的影响不大.
        The downburst outflow wind field was modeled by plane wall jet, and the co-flow was used to simulate the translation of downburst. Based on the computational fluid dynamics(CFD)method,the velocity profile of steady downburst was simulated with Reynolds stress model(RSM),and then a high-rise building model was put into the wind field to study the surface pressure distribution. The velocity profile from the numerical analysis results matches well with the empirical models as well as the plane and radial wall jet experiments. The pressure distribu-tion characteristics of the building model in plane wall jet flow is in good accordance with the results of the imping jet experiment. The pressure coefficient decreases when the downstream distance increases. The pressure coefficient decreases with the increase of wall jet inlet turbulence intensity. When the half-width of the downburst velocity pro-file is higher than 1.45 times height of the building, the pressure distribution in wall jet flow is similar with that in boundary layer. Co-flow mainly has influence on the structure in the lower part. The wind direction of wall jet has little effect on the maximum pressure.
引文
[1] FUJITA T T. Manual of downburst identification for project NIMROD:SMRP research paper 156[R]. Chicago:University of Chicago,1978:19—31.
    [2] DEMPSEY D,WHITE H. Winds wreak havoc on lines[J]. Transmission and Distribution World,1996,48(6):32—37.
    [3] PROCTOR F H. Numerical simulations of an isolated microburst.part I:dynamics and structure[J]. Journal of the Atmospheric Sciences,1988,45(21):3137—3160.
    [4] LETCHFORD C W,MANS C,CHAY M T. Thunderstorms-their importance in wind engineering(a case for the next generation wind tunnel)[J]. Journal of Wind Engineering and Industrial Aerodynamics,2002,90(12):1415—1433.
    [5] LETCHFORD C W,CHAY M T. Pressure distributions on a cube in a simulated thunderstorm downburst. part A:stationary downburst observations[J]. Journal of Wind Engineering and Industrial Aerodynamics,2002,90(7):711—732.
    [6] LETCHFORD C W,CHAY M T. Pressure distributions on a cube in a simulated thunderstorm downburst. part B:moving downburst observations[J]. Journal of Wind Engineering and Industrial Aerodynamics,2002,90(7):733—753.
    [7] SENGUPTA A,SARKAR P P. Experimental measurement and numerical simulation of an impinging jet with application to thunderstorm microburst winds[J]. Journal of Wind Engineering&Industrial Aerodynamics,2008,96(3):345—365.
    [8] MASON M S,JAMES D L,LETCHFORD C W. Wind pressure measurements on a cube subjected to pulsed impinging jet flow[J].Wind&Structures an International Journal,2009,12(1):77—88.
    [9]陈勇,崔碧琪,余世策,等.雷暴冲击风作用下球壳型屋面模型风压特性试验研究[J].建筑结构学报,2011,32(8):26—33.CHEN Y,CUI B Q,YU S C,et al. Experimental investigation of spherical roof subjected to thunderstorm downbursts[J]. Journal of Building Structures,2011,32(8):26—33.(In Chinese)
    [10]邹鑫,汪之松,李正良.稳态冲击风作用下高层建筑风荷载特性试验研究[J].湖南大学学报(自然科学版),2016,43(1):29—36.ZOU X,WANG Z S,LI Z L. Experimental study on the wind load characteristics of high-rise building in stationary downbursts[J].Journal of Hunan University(Natural Sciences),2016,43(1):29—36.(In Chinese)
    [11]汪之松,左其刚,唐伟峰,等.稳态冲击射流作用下平地及坡地高层建筑的风荷载特性[J].建筑结构学报,2017,38(3):103—110.WANG Z S,ZUO Q G,TANG W F,et al. Wind load characteristics for high-rise building on flat terrain and slope under steady-state impinging jet[J]. Journal of Building Structures,2017,38(3):103—110.(In Chinese)
    [12] KIM J,HANGAN H,HO T C E. Downburst versus boundary layer induced wind loads for tall buildings[J]. Wind&Structures an International Journal,2007,10(5):481—494.
    [13]李宏海,欧进萍.下击暴流作用下建筑物表面风压分布模拟[J].工程力学,2011,28(S2):147—151.LI H H,OU J P. Numerical simulation of the wind-induced pressure distribution on building surface in downburst[J]. Engineering Mechanics,2011,28(S2):147—151.(In Chinese)
    [14]汤卓,吕令毅.雷暴冲击风荷载的大涡模拟[J].空气动力学学报,2011,29(1):147—151.TANG Z,L譈L Y. Large eddy simulation of downburst wind load[J].Acta Aerodynamica Sinica,2011,29(1):147—151.(In Chinese)
    [15]吉柏锋,瞿伟廉.下击暴流作用下高层建筑物表面风压分布特性[J].华中科技大学学报(自然科学版),2012,40(9):89—94.JI B F,QU W L. Mean wind pressure distribution characteristics on tall building under downburst[J]. Journal of Huazhong University of Science and Technology(Natural Science Edition),2012,40(9):89—94.(In Chinese)
    [16]LIN W E,ORF L G,SAVORY E,et al. Proposed large-scale modelling of the transient features of a downburst outflow[J]. Wind&Structures an International Journal,2007,10(4):315—346.
    [17] HJELMFELT M R. Structure and life cycle of microburst outflows observed in Colorado[J]. Journal of Applied Meteorology,1988,27(8):900—927.
    [18] HOLMES J D. Modelling of extreme thunderstorm winds for wind loading of structures and risk assessment[C]//Proceeding of the Tenth International Conference on Wind Engineering. Copenhagen,Denmark:Balkema,1999:1409—1415.
    [19]FUJITA T T. The downburst:microburst and macroburst—report of projects NIMROD and JAWS[R]. Chicago:University of Chicago,1985:1—122.
    [20]VICROY D D. Assessment of microburst models for downdraft estimation[J]. Journal of Aircraft,1992,29(6):1043—1048.
    [21] WOOD G S,KWOK K C K. Physical and numerical modeling of thunderstorm downbursts[J]. Journal of Wind Engineering and Industrial Aerodynamics,2001,89(6):535—552.
    [22]OSEGUERA R M,BOWLES R L. A simple analytic 3-dimensional downburst model based on boundary layer stagnation flow:NASA technical memorandum 100632[R]. Hampton,Virginia:Langley Research Center,National Aeronautics and Space Administration,1988:1—16.
    [23] CHAY M T,ALBERMANI F G,HAWES H. Wind loads on transmission line structures in simulated downbursts[C]//World Congress on Asset Management. Gold Coast,Australia,2006:1—13.
    [24] ABOSHOSHA H,BITSUAMLAK G,DAMATTY A E. Turbulence characterization of downbursts using LES[J]. Journal of Wind Engineering&Industrial Aerodynamics,2015,136:44—61.
    [25] ANSYS,Inc. ANSYS FLUENT theory guide(Release 15.0)[M].Canonsburg:SAS IP,Inc,2013:41—140.
    [26]WILCOX D C. Turbulence modeling for CFD[M].2nd ed.La Canada:DCW Industries,Inc,1998:273—339.
    [27]WILCOX D C. Turbulence modeling for CFD[M].3rd ed.La Canada:DCW Industries,Inc,2006:303—380.
    [28] ERIKSSON J G,KARLSSON R I,PERSSON J. An experimental study of a two-dimensional plane turbulent wall jet[J]. Experiments in Fluids,1998,25(1):50—60.
    [29] COOPER D,JACKSON D C,LAUNDER B E,et al. Impinging jet studies for turbulence model assessment-I. Flow-field experiments[J]. International Journal of Heat&Mass Transfer,1993,36(5):2675—2684.
    [30] LAUNDER B E,RODI W. The turbulent wall jet[J]. Progress in Aerospace Sciences,1981,79(19):81—128.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700