数字微镜器件在会聚成像光路中的像差分析
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Analysis on Aberration of Digital Micromirror Device in Convergent Imaging Path
  • 作者:孙永强 ; 胡源 ; 王月旗 ; 王祺 ; 付跃刚
  • 英文作者:Sun Yongqiang;Hu Yuan;Wang Yueqi;Wang Qi;Fu Yuegang;Key Laboratory of Opto-Electronic Measurement and Optical Information Transmission Technology,Ministry of Education, Changchun University of Science and Technology;
  • 关键词:成像系统 ; 成像分析 ; 光程差 ; 数字微镜器件 ; 焦深
  • 英文关键词:imaging systems;;image analysis;;optical path difference;;digital micromirror device;;depth of focus
  • 中文刊名:GXXB
  • 英文刊名:Acta Optica Sinica
  • 机构:长春理工大学光电测控与光信息传输技术教育部重点实验室;
  • 出版日期:2018-11-13 10:08
  • 出版单位:光学学报
  • 年:2019
  • 期:v.39;No.444
  • 基金:国家重大科学仪器设备开发专项(2017YFF0107901)
  • 语种:中文;
  • 页:GXXB201903016
  • 页数:6
  • CN:03
  • ISSN:31-1252/O4
  • 分类号:144-149
摘要
数字微镜器件(DMD)应用于会聚成像光路中时,其表面微镜绕各自旋转轴做偏转运动,且微镜相对平面反射镜呈非连续分布,这导致了经过DMD反射后的光束轴外视场主光线与轴上视场主光线存在光程差。利用几何光学和像差理论,在基于DMD的会聚成像光路中得到了DMD面上的像高、光线入射角度、DMD像素大小及偏转角与最终光程差之间的关系。分析了影响光学系统像质的因素及补偿方法,并通过仿真模拟和实验验证了理论的正确性。该研究结果对采用DMD器件的光学系统设计和装调均具有重要意义。
        When the digital micromirror device(DMD) is applied in the convergent path of the imaging optical system, the deflection movement of the micromirrors on the DMD surface around their respective rotation axes and the non-continuous distribution with respect to the plane mirror directly result in an optical path difference(OPD) between the off-axis chief ray and the on-axis chief ray. Based on the geometrical optics and the aberration theory, the relationship between the final OPD and the image height on the DMD surface, the incident angle, the DMD pixel size and the DMD tilt angle is obtained in the DMD-based convergent imaging path. The factors influencing the image quality of optical system and the compensation method are analyzed. The correctness of the theory is verified by simulation and experiments. The research results have a great significance to the design and adjustment of optical systems with DMD devices.
引文
[1] Wang Y H, Yu X F, Li R J, et al. Nonscanning 3D profile parallel confocal detecting system based on DLP technology[J]. Proceedings of SPIE, 2003, 5253: 437-441.
    [2] Gao J B, Wang J, Yang B, et al. Dynamic IR scene projector using the digital micromirror device[J]. Proceedings of SPIE, 2005, 5640: 174-178.
    [3] Li Y D, Fu Y G, Liu Z Y, et al. Projection system design of medium-frequency wave dynamic infrared scene projector based on digital micromirror device[J]. Proceedings of SPIE, 2014, 9300: 93001X.
    [4] Wang J, Zhao L X, Yan W, et al. Research on digital gray-tone projection lithography[J]. Proceedings of SPIE, 2009, 7284: 728417.
    [5] Lü W Z, Liu W Q, Wei Z L, et al. Design of high dynamic range imaging optical system based on DMD[J]. Infrared and Laser Engineering, 2014, 43(4): 1167-1171. 吕伟振, 刘伟奇, 魏忠伦, 等. 基于DMD的高动态范围成像光学系统设计[J]. 红外与激光工程, 2014, 43(4): 1167-1171.
    [6] Zhou W. Study on enhancing dynamic range of CCD image based on digital micro-mirror device[J]. Acta Optica Sinica, 2009, 29(3): 638-642. 周望. 基于数字微镜器件技术提高面阵CCD相机动态范围的研究[J]. 光学学报, 2009, 29(3): 638-642.
    [7] Adeyemi A A, Barakat N, Darcie T E. Applications of digital micro-mirror devices to digital optical microscope dynamic range enhancement[J]. Optics Express, 2009, 17(3): 1831-1843.
    [8] Pozzi P, Wilding D, Soloviev O, et al. Use of digital micro-mirror devices as dynamic pinhole arrays for adaptive confocal fluorescence microscopy[J]. Proceedings of SPIE, 2018, 10546: 105460D.
    [9] Wehlburg C M, Wehlburg J C, Gentry S M, et al. Optimization and characterization of an imaging Hadamard spectrometer[J]. Proceedings of SPIE, 2001, 4381: 506-515.
    [10] Love S P. Programmable matched filter and Hadamard transform hyperspectral imagers based on micro-mirror arrays[J]. Proceedings of SPIE, 2009, 7210: 721007.
    [11] Wu Y, Mirza I O, Ye P, et al. Development of a-based compressive sampling hyperspectral imaging (CS-HSI) system[J]. Proceedings of SPIE, 2011, 7932: 79320I.
    [12] Wang X D, Liu H, Dang B S, et al. Miniature digital micro-mirror device hadamard transform near-infrared spectrometer[J]. Acta Optica Sinica, 2015, 35(5): 0530003. 王晓朵, 刘华, 党博石, 等. 微型DMD哈达玛变换近红外光谱仪[J]. 光学学报, 2015, 35(5): 0530003.
    [13] Choi J R, Sung J H, Shuler M L, et al. Confocal fluorescence detection of cell-based assays using a digital micro-mirror device[J]. Proceedings of SPIE, 2010, 7596: 759608.
    [14] Nayar S K, Branzoi V, Boult T E. Programmable imaging using a digital micromirror array[C]. IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2004: 8161423.
    [15] Liu Y Y, Zhang X, Xu Z P, et al. Enhancing spatial-resolution with detectors of special-shaped pixels[J]. Optics and Precision Engineering, 2009, 17(10): 2620-2627. 刘妍妍, 张新, 徐正平, 等. 赋形像元探测器提高空间分辨率[J]. 光学精密工程, 2009, 17(10): 2620-2627.
    [16] Liu Y Y, Zhang X, Xu Z P, et al. Application of special-shaped-pixel detectors in super resolution reconstruction[J]. Infrared and Laser Engineering, 2009, 38(6): 971-976. 刘妍妍, 张新, 徐正平, 等. 赋形像元探测器在超分辨重建中的应用[J]. 红外与激光工程, 2009, 38(6): 971-976.
    [17] Li X T, Cen Z F. Geometrical optics, aberrations and optical design[M]. 3rd ed. Hangzhou: Zhejiang University Press, 2014: 23-25. 李晓彤, 岑兆丰. 几何光学·像差·光学设计[M]. 3版. 杭州: 浙江大学出版社, 2014: 23-25.
    [18] Lipson A, Lipson S G, Lipson H. Optical physics[M]. 4th ed. Cambridge: Cambridge University Press, 2010.
    [19] Wang L S. A method for correcting inclination of image plane[J]. Optical Machinery, 1987(6): 63-68. 王立昇. 校正像面倾斜的一种方法[J]. 光学机械, 1987(6): 63-68.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700