基于特征基函数的柱面共形吸波超材料的优化设计
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Design of Cylindrical Conformal Composite Absorbing Metamaterial via Characteristic Basis Function Method
  • 作者:于家傲 ; 彭世蕤 ; 李有权 ; 刘立国
  • 英文作者:YU Jia-ao;PENG Shi-rui;LI You-quan;LIU Li-guo;Department of Information Warfare,Air Force Early Warning Academy;College of Electronic Engineering,Naval University of Engineering,PLA;
  • 关键词:特征基函数 ; 吸波超材料 ; 六边形环 ; 宽带 ; 周期边界条件
  • 英文关键词:characteristic basis function method(CBFM);;composite absorbing metamaterial;;hexagonal loops;;ultra-wideband;;periodic boundary condition
  • 中文刊名:DZXU
  • 英文刊名:Acta Electronica Sinica
  • 机构:空军预警学院信息对抗系;海军工程大学电子工程学院;
  • 出版日期:2019-03-15
  • 出版单位:电子学报
  • 年:2019
  • 期:v.47;No.433
  • 基金:国家自然科学基金(No.61601492)
  • 语种:中文;
  • 页:DZXU201903022
  • 页数:7
  • CN:03
  • ISSN:11-2087/TN
  • 分类号:161-167
摘要
针对吸波超材料与柱面载体共形时其吸波性能变差的问题,提出了一种非均匀单元方案及其优化设计方法.在柱面共形设计中,根据吸波超材料在无曲率变化方向上的周期性建立周期边界条件.基于特征基函数法的子块划分个数通过周期边界条件进行压缩,降低了矩阵方程求解维度,提高了优化设计速度.通过遗传算法优化,得到一组非均匀单元设计参数,并进行加工和实测.仿真和实测结果表明,所设计的非均匀单元方案改善了柱面共形对吸波超材吸波性能的影响,在2.8~8.0GHz频段内实现了良好的雷达散射截面积减缩特性.
        The absorption performance is going to decline when the composite absorbing metamaterial is in conformity with a cylindrical carrier.A non-uniform structure for conformal composite absorbing metamaterial and its optimization design is proposed to improve the wideband absorbing property.The periodic boundary conditions are established based on the periodicity in the direction of no curvature change.The number of sub-blocks parted by the characteristic basis function method is compressed by the periodical boundary conditions,and the dimension of the inverse of impedance matrix is also reduced to accelerate the optimization.A prototype is fabricated and measured with the optimized parameters given by genetic algorithm.The simulated and measured results show the proposed conformal absorbing material improves the influence of the cylindrical conformal and reduces the radar cross section in 2.8~8.0 GHz for different polarized incidence.
引文
[1] L Josefsson,P Persson.Conformal Array Antenna Theory and Design[M].Canada:Wiley-IEEE Press,2006.19-30.
    [2] Silva M W B,Kretly L C.An efficient method based on equivalent-circuit modeling for analysis of frequency selective surfaces[A].Microwave and Optoelectronics Conference[C].Rio de Janeiro,Brazil:IEEE,2013.1-4.
    [3] Munk B A.Frequency Selective Surfaces:Theory and Design[M].New Jersey:John Wiley and Sons,Inc,2000.270-276.
    [4] 熊益军,王岩,王强,等.一种基于3D打印技术的结构型宽频吸波超材料[J].物理学报,2018,67(8):084202-209.Xiong Y J,Yan W,Qiang W,et al.Structural broadband absorbing metamaterial based on three-dimensional printing technology[J].Acta Physica Sinica,2018,67(8):084202-209.(in Chinese)
    [5] Ghandehari M B,Feiz N,Alipoor M.Circuit model analysis of a polarization and wide angle independent hexagonal shaped metamaterial absorber[J].Applied Computational Electromagnetics Society Journal,2015,30(8):909-914.
    [6] Han Y,Che W Q,Christopoulos C,et al.A fast and efficient design method for circuit analog absorbers consisting of resistive square-loop arrays[J].IEEE Transactions on Electromagnetic Compatibility,2016,58(3):747-757.
    [7] Shang Y P,Shen Z X,Xiao S Q.On the design of single-layer circuit analog absorber using double-square-loop array[J].IEEE Transactions on Antennas and Propagation,2013,61(12):6022-6029.
    [8] D’Aloia A G,D’Amore M,Sarto M S.Adaptive broadband radar absorber based on tunable graphene[J].IEEE Transactions on Antennas and Propagation,2016,64(6):2527-2531.
    [9] Han W,Peng K,Cheng W T,et al.Broadband tunability of polarization-insensitive absorber based on frequency selective surface[J].Scientific Reports,2016,6:23081.
    [10] He Y,Jiang J J,Chen M,et al.Design of an adjustable polarization-independent and wideband electromagnetic absorber[J].Journal of Applied Physics,2016,119(10):203.
    [11] Jang Y,Yoo M,Lim S.Conformal metamaterial absorber for curved surface[J].Optics Express,2013,21(20):24163.
    [12] Kong X K,Xu J Y,Mo J J,et al.Broadband and conformal metamaterial absorber[J].Front Optoelectron,2017,10(2):124-131.
    [13] Yasumoto K,Yoshitomi K.Efficient calculation of lattice sums for free-space periodic Green's function[J].IEEE Transactions on Antennas and Propagation,1999,47(6):1050-1055.
    [14] Stupfel B,Pion Y.Impedance boundary conditions for finite planar and curved frequency selective surfaces[J].IEEE Transactions on Antennas and Propagation,2005,53(4):1415-1425.
    [15] Sipus Z,Bosiljevac M.Improving the convergence of double series summation encountered in the analysis of curved frequency selective surfaces[A].European Conference on Antennas and Propagation[C].Rome,Italy:IEEE,2011.2716-2719.
    [16] Bianconi G,Pelletti C,Mittra R,et al.An efficient technique for the evaluation of the reduced matrix in the context of the cbfm for layered media[J].IEEE Antennas and Wireless Propagation Letters,2011,10(24):674-677.
    [17] Prakash V V S,Mittra R.Characteristic basis function method:A new technique for efficient solution of method of moments matrix equations[J].Microwave and Optical Technology Letters,2003,36(2):95-100.
    [18] Sun Y F,Chan C H,Mittra R,et al.Characteristic basis function method for solving large problems arising in dense medium scattering[A].Antennas and Propagation Society International Symposium[C].Columbus,OH,USA:IEEE,2003.1068-1071.
    [19] Makarov S N.Antenna and EM Modeling with Matlab[M].New Jersey:John Wiley and Sons Inc,2002.
    [20] 苏建勋,李增瑞.积分方程法结合Ewald变换和栅格对称性分析周期性结构的散射特性[J].中国传媒大学学报:自然科学版,2015(3):24-28.Su J X,Li Z R.Integral-equation analysis of periodic structure using ewald transformation and lattice symmetry[J].Journal of Communication University of China,2015,22(3):24-28.(in Chinese)

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700