基于桥式放大机构的薄膜致动器设计
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Design of the Film Actuator Based on Bridge-Type Mechanism
  • 作者:刘积昊 ; 闫维新 ; 李培兴 ; 潘根 ; 赵言正
  • 英文作者:LIU Jihao;YAN Weixin;LI Peixing;PAN Gen;ZHAO Yanzheng;State Key Laboratory of Mechanical System and Vibration,Shanghai Jiao Tong University;
  • 关键词:薄膜致动器 ; 桥式机构 ; 弹性理论 ; 位移放大比
  • 英文关键词:film actuator;;bridge-type mechanism;;elastic theory;;displacement amplification ratio
  • 中文刊名:SHJT
  • 英文刊名:Journal of Shanghai Jiaotong University
  • 机构:上海交通大学机械系统与振动国家重点实验室;
  • 出版日期:2018-04-28
  • 出版单位:上海交通大学学报
  • 年:2018
  • 期:v.52;No.386
  • 基金:国家自然科学基金项目(61273342)资助
  • 语种:中文;
  • 页:SHJT201804008
  • 页数:8
  • CN:04
  • ISSN:31-1466/U
  • 分类号:55-62
摘要
提出了一种基于桥式放大机构的柔性薄膜致动器设计.该设计采用桥式放大机构提高致动器位移输出特性,利用并联耦合连杆机构降低输出漂移.采用理想模型和弹性梁理论,对薄膜致动器的运动学特性与形变位移模型建模,深入探究机构位移放大比和输出漂移误差.中心旋转对称式的机构拓扑构型,降低热变产生的寄生位移.通过ANSYS有限元模拟以及样机实验,验证致动器机构设计和位移放大比.采用MEMS工艺设计的样机,最大输出位移为50μm,位移放大比为23.设计参数满足约束要求时,机构输出位移大小只与并联输入位移的均值相关,径向位移不会因输入位移大小的差异产生.
        A high frequency film actuator for the micropump is proposed based on the bridge-type mechanism.The bridge-type mechanism contributes to the improvement in the amplification ratio,and the linkage mechanism is employed to eliminate the output drift.The ideal model and the elastic theory are respectively used to establish the kinematic characteristics and the deformation of the film actuator in order to investigate the displacement amplification ratio and the output drift.It is possible for the rotational symmetric configuration to reduce the thermal deformations.By the finite element analysis in ANSYS software and prototype experiments the mechanical design and the displacement amplification ratio are evaluated.The prototype was made by MEMS technology,and had the maximum output displacement of50μm and the displacement amplification ratio of 23.If the geometric relation agrees with the developed conditions,the output displacement is only relative to the mean of the input displacements,and no output radial displacement exists because of the difference among the inputs.
引文
[1]CAZORLA P H,FUCHS O,COCHET M,et al.A low voltage silicon micro-pump based on piezoelectric thin films[J].Sensors and Actuators A:Physical,2016,250:35-39.
    [2]TANDON V,KANG W S,ROBBINS T A,et al.Microfabricated reciprocating micropump for intracochlear drug delivery with integrated drug/fluid storage and electronically controlled dosing[J].Lab on a Chip,2016,16(5):829-846.
    [3]COBO A,SHEYBANI R,TU H,et al.A wireless implantable micropump for chronic drug infusion against cancer[J].Sensors and Actuators A:Physical,2016,239:18-25.
    [4]LINTEL H T G,POL F C M,BOUWSTRA S.A piezoelectric micropump based on micromachining of silicon[J].Sensors and Actuators,1988,15(2):153-167.
    [5]GRZEBYK T P,GORECKA-DRZAZGA A,DZIUBAN J A,et al.Micropump for generation and control of vacuum inside miniature devices[J].Journal of Microelectromechanical Systems,2014,23(1):50-55.
    [6]ZHANG Z,KAN J,CHENG G,et al.A piezoelectric micropump with an integrated sensor based on space-division multiplexing[J].Sensors and Actuators A:Physical,2013,203:29-36.
    [7]CONDE A J,BIANCHETTI A,VEIRAS F E,et al.A polymer chip-integrable piezoelectric micropump with low backpressure dependence[J].RSC Advances,2015,5(62):49996-50000.
    [8]ZHANG W,EITEL R E.An integrated multilayer ceramic piezoelectric micropump for microfluidic systems[J].Journal of Intelligent Material Systems and Structures,2013,24(13):1637-1646.
    [9]WANG X Y,MA Y T,YAN G Y,et al.A compact and high flow-rate piezoelectric micropump with a folded vibrator[J].Smart Materials and Structures,2014,23(11):115005.
    [10]XU Y N,XIANG C C.Piezoceramic stack actuators for micropositioning stage[J].Key Engineering Materials,2012,512:1337-1341.
    [11]QIN Y,SHIRINZADEH B,ZHANG D,et al.Design and kinematics modeling of a novel 3-DOF monolithic manipulator featuring improved Scott-Russell mechanisms[J].Journal of Mechanical Design,2013,135(10):101004.
    [12]QI K,XIANG Y,FANG C,et al.Analysis of the displacement amplification ratio of bridge-type mechanism[J].Mechanism and Machine Theory,2015,87:45-56.
    [13]BHAGAT U,SHIRINZADEH B,CLARK L,et al.Design and analysis of a novel flexure-based 3-DOF mechanism[J].Mechanism and Machine Theory,2014,74:173-187.
    [14]曲兴田,董景石,郭俊臣,等.基于柔性铰链放大的压电叠堆泵[J].吉林大学学报:工学版,2008,38(3):552-556.QU Xingtian,DONG Jingshi,GUO Junchen,et al.Piezoelectric stack pump based on flexure hinge magnification[J].Journal of Jilin University(Engineering and Technology Edition),2008,38(3):552-556.
    [15]LOBONTIU N,GARCIA E.Analytical model of displacement amplification and stiffness optimization for a class of flexure-based compliant mechanisms[J].Computers&Structures,2003,81(32):2797-2810.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700