人工油松林中不同植物叶片非结构性碳水化合物含量对氮添加的响应
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Responses of non-structural carbohydrates content in leaves of different plant species in Pinus tabuliformis plantation to nitrogen addition
  • 作者:张豆 ; 景航 ; 王国梁
  • 英文作者:ZHANG Dou;JING Hang;WANG Guo-li-ang;Institute of Soil and Water Conservation,Chinese Academy of Sciences and Ministry of Water Resources;University of Chinese Academy of Sciences;Institute of Soil and Water Conservation,Northwest A&F University;
  • 关键词:氮添加 ; 非结构性碳水化合物 ; 物种 ; 叶片
  • 英文关键词:nitrogen addition;;non-structural carbohydrates;;species;;leaf
  • 中文刊名:YYSB
  • 英文刊名:Chinese Journal of Applied Ecology
  • 机构:中国科学院水利部水土保持研究所;中国科学院大学;西北农林科技大学水土保持研究所;
  • 出版日期:2018-12-26 14:34
  • 出版单位:应用生态学报
  • 年:2019
  • 期:v.30
  • 基金:国家自然科学基金项目(41671513);; 中国科学院科技服务网络计划项目(STS计划:KFJ-STS-ZDTP-036);; 国家科技支撑项目(2015BAC01B03)资助~~
  • 语种:中文;
  • 页:YYSB201902017
  • 页数:7
  • CN:02
  • ISSN:21-1253/Q
  • 分类号:133-139
摘要
全球氮沉降通过影响树木叶片的生理过程影响森林生态系统的结构与组成,但目前关于氮沉降对森林生态系统中不同植物叶片非结构性碳水化合物(NSC)含量的影响还不十分清楚.本研究选取黄土丘陵区人工油松林中油松、辽东栎、忍冬、绣线菊、黄刺玫、茜草、披针苔草7种主要高等植物,比较了3年氮添加(0、3、6、9 g N·m~(-2)·a~(-1),分别用N_0、N_3、N_6、N_9表示)对7种植物叶片中NSC的影响.结果表明:不同植物叶片可溶性糖、淀粉含量变异很大,二者变异最高的均为黄刺玫,最低的分别为绣线菊和披针苔草;不同植物可溶性糖、淀粉对氮添加的响应存在明显差异.N_6处理下茜草的可溶性糖和淀粉的变异高于其他物种,N_3和N_9处理下绣线菊的变异高于其他物种,可溶性糖和淀粉含量变异最小的物种在不同氮添加水平下不同.随着氮添加水平的增加,油松和披针苔草的可溶性糖含量持续升高,绣线菊持续降低,辽东栎、忍冬和黄刺玫的可溶性糖含量先降低后增加,在N_6处理达到最小,而茜草的可溶性糖含量呈现较复杂的变化趋势.氮添加对植物叶片中淀粉含量的影响表现为油松、忍冬和披针苔草的淀粉含量持续增加,绣线菊先降低后增加,在N_3处理达到最小,而黄刺玫和茜草则呈现较复杂的变化趋势,辽东栎淀粉含量变化趋势平缓.在氮添加后,土壤pH、有机碳、全氮、全磷与植物叶片NSC含量无相关关系,仅N_0和N_3水平下上述土壤理化指标会显著影响可溶性糖/淀粉.表明林地不同植物叶片中NSC含量对氮添加的响应明显不同,研究全球氮沉降或氮添加对林地生态系统的影响需要考虑不同植物,尤其不同生活型植物的不同响应.
        Through its impact on plant physiological processes,global nitrogen deposition could alter the structure and composition of forest ecosystems. However,we are not clear about the effects of N deposition on leaves' non-structural carbohydrate( NSC) content of different plants. In this study,we compared the responses of NSC contents in seven different plant species to four nitrogen addition levels( 0,3,6,and 9 g N·m~(-2)·a~(-1),referred to as N_0,N_3,N_6,N_9,respectively),including Pinus tabuliformis,Quercus liaotungensis,Lonicera japonica,Spiraea salicifolia,Rosa xanthina,Rubia cordifolia,and Carex lanceolata in an artificial Pinus tabuliformis forest located in the hilly area of the Loess Plateau. The contents of soluble sugar and starch varied greatly in plant species,with the highest variability in R. xanthina and the lowest in S. salicifolia and C. lanceolata.There were significant differences in the responses of soluble sugar and starch contents to nitrogen addition among different species. Under N_6 treatment,the variability of soluble sugar and starch in R. cordifolia came the first while S. salicifolia exceeded all other species under N_3 and N_9treatments on that rating. The specific species with the lowest variability of soluble sugar and starch contents differed with nitrogen addition levels. With the increases of nitrogen addition rate,the soluble sugar content of P. tabuliformis and C. lanceolata exhibited a continuous rising trend,an opposite trend of S. salicifolia,while that of Q. liaotungensis,L. japonica,and R. xanthina decreased first and then increased,reaching its minimum at N_6 treatment. The response of R. cordifolia to nitrogen addition was complex. With respect to starch content,P. tabuliformis,L. japonica and C. lanceolata showed a continuous increase trend with nitrogen addition whereas S. salicifolia decreased first and then increased,troughing at N3 treatment. R. xanthina and R. cordifolia responded complicatedly yet Q.liaotungensis appeared less responsive. Under N addition treatments,there was no explicit correlation between NSC content and soil physical and chemical properties including p H,organic carbon,total nitrogen and phosphorus. There was a significant influence of those soil properties on the soluble sugar/starch ratio under N_0 or N_3treatment. Our results indicate that different species have obviously different responses of NSC to nitrogen addition. Future research concerning the impacts of global nitrogen deposition on forest ecosystems should take into account the target species,especially to pay attention to the responses of vegetation with different life forms.
引文
[1] Chapin FS,Matson PA,Mooney HA. Principles of Terrestrial Ecosystem Ecology. Berlin:Springer,2011
    [2] Kobe RK,Iyer M,Walters MB. Optimal partitioning theory revisited:Nonstructural carbohydrates dominate root mass responses to nitrogen. Ecology,2010,91:166-179
    [3] Li N-N(李娜妮),He N-P(何念鹏),Yu G-R(于贵瑞). Non-structural carbohydrates in leaves of tree species from four typical forests in China. Acta Botanica Boreali-Occidentalia Sinica(西北植物学报),2015,35(9):1846-1854(in Chinese)
    [4] Liu Y-H(刘颖慧),Jia H-K(贾海坤),Gao Q(高琼). Review on researches of photoassimilates partitioning and its models. Acta Ecologica Sinica(生态学报),2006,26(6):1981-1992(in Chinese)
    [5] Li MH,Cherubini P,Dobbertin M,et al. Responses of leaf nitrogen and mobile carbohydrates in different Quercus species/provenances to moderate climate changes.Plant Biology,2013,15(suppl.1):177-184
    [6] Lamarque JF,Kiehl JT,Brasseur GP,et al. Assessing future nitrogen deposition and carbon cycle feedback using a multimodel approach:Analysis of nitrogen deposition. Journal of Geophysical Research:Atmospheres,2005,110:2657-2677
    [7] Lu M(卢蒙). The Effect of Nitrogen Additions on Ecosystem Carbon and Nitrogen Cycles:A Meta-analysis. PhD Thesis. Shanghai:Fudan University,2009(in Chinese)
    [8] McGroddy ME,Daufresne T,Hedin LO. Scaling of C:N:P stoichiometry in forests worldwide:Implications of terrestrial Redfield-type ratios. Ecology,2004,85:2390-2401
    [9] Wang K(王凯),Lei H(雷虹),Xia Y(夏扬),et al. Responses of non-structural carbohydrates of poplar seedlings to increased precipitation and nitrogen addition. Chinese Journal of Applied Ecology(应用生态学报),2017,28(2):399-407(in Chinese)
    [10] Thomas VFD,Braun S,Flückiger W. Effects of simultaneous ozone exposure and nitrogen loads on carbohydrate concentrations,biomass,and growth of young spruce trees(Picea abies). Environmental Pollution,2005,137:507-516
    [11] Meng X-J(孟祥娇). Seedling Non-structural Carbohydrate Storage and Allocation Traits of Common Species in Tiantong National Forest Park,Zhejiang Province. Master Thesis. Shanghai:East China Normal University,2013(in Chinese)
    [12] Wang X(王雪),Luo W-T(雒文涛),Yu Q(庾强),et al. Effects of nutrient addition on nitrogen,phosphorus and non-structural carbohydrates concentrations in leaves of dominant plant species in a semiarid steppe. Chinese Journal of Ecology(生态学杂志),2014,33(7):1795-1802(in Chinese)
    [13] Wang Y-R(王逸然),Zheng C-Y(郑成洋),Zeng FX(曾发旭). Seasonal dynamic changes of non-structural carbohydrate in tissues of Picea mongolica in Baiyinaobao. Acta Scientiarum Naturalium Universitatis Pekinensis(北京大学学报:自然科学版),2016,52(5):967-976(in Chinese)
    [14] Zheng Y-P(郑云普),Wang H-X(王贺新),Lou X(娄鑫). Changes of non-structural carbohydrates and its impact factors in trees:A review. Chinese Journal of Applied Ecology(应用生态学报),2014,25(4):1188-1196(in Chinese)
    [15] Jing H(景航). Effects of Nitrogen Addition on Fine Root Decomposition of Planted Chinese Pine Forest.Master Thesis. Yangling:Northwest A&F University,2017(in Chinese)
    [16] Gao J-F(高俊凤). Experimental Guidance for Plant Physiology. Beijing:Higher Education Press,2006(in Chinese)
    [17] Bao S-D(鲍士旦). Soil and Agricutural Chemistry Analysis. 3rd Ed. Beijing:China Agriculture Press,2000(in Chinese)
    [18] Lu R-K(鲁如坤). Analytical Methods for Soil and Agro-chemistry. Beijing:Chinese Agricultural Science and Technology Press,1999(in Chinese)
    [19] Pan Q-M(潘庆民),Han X-G(韩兴国),Bai Y-F(白永飞). Advances in physiology and ecology studies on stored non-structure carbohydrates in plants. Chinese Bulletin of Botany(植物学通报),2002,19(1):30-38(in Chinese)
    [20] Wang YF,Zwiazek J. Effects of early spring photosynthesis on carbohydrate content,bud flushing and root and shoot growth of Picea glauca Bare root seedlings.Scandinavian Journal of Forest Research,1999,14:295-302
    [21] Yu L-M(于丽敏),Wang C-K(王传宽),Wang X-C(王兴昌). Allocation of nonstructural carbohydrates for three temperate tree species in Northeast China. Chinese Journal of Plant Ecology(植物生态学报),2011,35(12):1245-1255(in Chinese)
    [22] Jiang S-S(蒋思思),Wei L-P(魏丽萍),Yang S(杨松),et al. Short term responses of photosynthetic pigments and nonstructural carbohydrates to simulated nitrogen deposition in three provenances of Pinus tabulaeformis Carr. seedlings. Acta Ecologica Sinica(生态学报),2015,35(21):7061-7070(in Chinese)
    [23] Zhao L(赵镭),Yang H-B(杨海波),Wang D-L(王达力),et al. Seedling photosynthesis traits and non-structural carbohydrate storage of common species in Tiantong National Forest Park,Zhejiang Province. Journal of East China Normal University(华东师范大学学报),2011(4):35-44(in Chinese)
    [24] Poorter L,Bongers L,Bongers F. Architecture of 54moist-forest tree species:Traits,trade-offs,and functional groups. Ecology,2006,87:1289-1301
    [25] Maslova SP,Tabalenkova GN,Golovko TK. Respiration and nitrogen and carbohydrate contents in perennial rhizome-forming plants as related to realization of different adaptive strategies. Russian Journal of Plant Physiology,2010,57:631-640
    [26] Poorter L,Kitajima K. Carbohydrate storage and light requirements of tropical moist and dry forest tree species.Ecology,2007,88:1000-1011
    [27] Reich PB,Tjoelker MG,Pregitzer KS,et al. Scaling of respiration to nitrogen in leaves,stems and roots of higher land plants. Ecology Letters,2008,11:793-801
    [28] Trethewey RN,Rees TA. A mutant of Arabidopsis thaliana lacking the ability to transport glucose across the chloroplast envelope. Biochemical Journal,1994,301:449-454
    [29] Zhang H. The study progress in plant starch. Journal of the Chinese Cereals and Oils Association,2006,21:41-46
    [30] Liu T(刘彤),Zhu J-Y(祝佳媛),Li P(李鹏),et al. Physiological and biochemical characteristics of Japanese yew seedlings as natural temperature falling in autumn and winter. Journal of Beijing Forestry University(北京林业大学学报),2013,35(2):51-56(in Chinese)

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700