典型酚类有毒废水的生物电化学降解及产电性能研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Electricity Generation by Degradation of Wastewater Containing Typical Phenolic Using a Microbial Fuel Cell
  • 作者:赵倩楠 ; 张秀丽 ; 徐敏敏 ; 高冠道 ; 李凤祥
  • 英文作者:Zhao Qiannan;Zhang Xiuli;Xu Minmin;Gao Guandao;Li Fengxiang;College of Environmental Science and Engineering,Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria,Remediation and Pollution Control for Urban Ecological Environmental,Nankai University;
  • 关键词:微生物燃料电池 ; 苯酚 ; 库伦效率 ; 功率密度 ; SEM
  • 英文关键词:microbial fuel cell;;phenol;;coulomb efficiency;;power density;;SEM
  • 中文刊名:NKDZ
  • 英文刊名:Acta Scientiarum Naturalium Universitatis Nankaiensis
  • 机构:南开大学环境科学与工程学院环境污染过程与基准教育部重点实验室天津市城市生态环境修复与污染防治重点实验室;
  • 出版日期:2019-04-15
  • 出版单位:南开大学学报(自然科学版)
  • 年:2019
  • 期:v.52
  • 基金:国家自然科学基金面上项目(31570504);; 天津市自然科学基金(16JCYBJC22900)
  • 语种:中文;
  • 页:NKDZ201902018
  • 页数:7
  • CN:02
  • ISSN:12-1105/N
  • 分类号:103-109
摘要
通过构建单室型微生物燃料电池,比较了以1 000 mg/L葡萄糖为单一燃料和100 mg/L苯酚+1 000mg/L葡萄糖混合时MFC的产电性能及阳极生物膜形态.结果表明,当以葡萄糖为单一燃料时,最大输出电压为486m V,对应的库伦效率和最大功率密度为30.54%和332.35 mW·m~(-2),COD去除率为90.97%.混合燃料时出现先升高再降低的趋势,体积比为50∶50时,最大输出电压为381 m V,库伦效率和功率密度为34.75%和204.26 mW·m~(-2),COD去除率为88.34%.通过对SEM的分析推断在链球菌为降解葡萄糖的优势菌群,短杆菌则为降解苯酚的主要微生物,其数量多少与产电性能有直接影响.实验说明,苯酚可以作为MFC的底物产电,能被MFC中的产电混合菌有效降解.
        By constructing a single chamber microbial fuel cell, the effect of phenol degradation and simultaneous electricity generation using glucose or a glucose-phenol mixture as the fuel was tested. The morphology of MFC anode biofilm under different experiment conditions was observed using SEM. During this study, when 1 000 mg/L glucose was used as the only substrate, MFC could work well with a maximal output voltage of 486 m V, corresponding coulomb efficiency and area power density were 30.54% and332.35 mW·m~(-2) respectively. And COD removal was 90.97%. While the volume ratio of phenol and glucose was 50∶50, maximal output voltage reached 381 mV, corresponding coulomb efficiency and area power density were 34.75% and 204.26 mW·m~(-2) respectively, COD removal efficiency was 88.34%. According to the analysis of SEM, it is concluded that Streptococcus and Brevibacterium are probably the predominant group on the surface of the anode with glucose and phenol as the substrate, and its number may have a direct impact on the electrical performance. The results indicated that phenol could be used in the MFC for generating power and at the same time accomplishing biodegradation effectively.
引文
1项奇,谢晟瑜,张佳丽,等.氯酚类废水处理机理研究进展[J].工业水处理, 2017(11):10-15.
    2 Kossoff D, Dubbin W E, Alfredsson M, et al. Mine tailings dams:Characteristics, failure, environmental impacts, and remediation[J]. Applied Geochemistry, 2014, 51(12):229-245.
    3 Ahmad S A, Shamaan N A, Arif N M, et al. Enhanced phenol degradation by immobilized Acinetobacter sp.strain AQ5NOL 1[J]. World Journal of Microbiology&Biotechnology, 2012, 28(1):347.
    4 Cordova V L G, Mashhadi N, Chen M, et al. A short review of techniques for phenol removal from wastewater[J]. Current Pollution Reports, 2016, 2(3):157-167.
    5 Ren X, Guo H, Feng J, et al. Synergic mechanism of adsorption and metal-free catalysis for phenol degradation by N-doped graphene aerogel[J]. Chemosphere, 2017, 191:389.
    6 Ahmad S A, Shamaan N A, Syed M A, et al. Phenol degradation by Acinetobacter sp. in the presence of heavy metals[J]. Journal of the National Science Foundation of Sri Lanka, 2017, 45(3):247-253.
    7 魏霞,周俊利,谢柳,等.苯酚降解菌CM_HZX1菌株的分离_鉴定及降解性能研究[J].环境科学学报, 2016, 36(9):3 193-3 199.
    8 贺强礼,刘文斌,杨海军,等.一株苯酚降解菌的筛选鉴定及响应面法优化其降解[J].环境科学学报, 2016, 36(1):112-123.
    9 Logan B E, Hamelers B, Rozendal R, et al. Microbial fuel cells:methodology and technology. Environmental Science&Technology, 2006, 40(17):5 181.
    10 Kumar A, Hsu H H, Kavanagh P, et al. The ins and outs of microorganism–electrode electron transfer reactions. Nature Reviews Chemistry, 2017, 1(3):17-24.
    11 李英,金春姬,杨远乐,等.生物阴极型微生物燃料电池处理氨氮有机废水及产电性能的研究[J].环境污染与防治, 2017. 39(1):70-76.
    12 付国楷,张林防,郭飞,等.榨菜废水MFC多周期运行产电性能及COD降解[J].中国环境科学, 2017, 37(4):1 401-1 407.
    13 顾熠澐,微生物燃料电池输出功率影响因素综述[J].水电与新能源, 2014(2):69-74.
    14 刘春梅,底物浓度和缓冲液浓度对MFC性能影响研究[J].环境科学与技术, 2015, 38(12):48-51.
    15 Zhang B G, Wang Z J, Zhou X, et al. Electrochemical decolorization of methyl orange powered by bioelectricity from single-chamber microbial fuel cells[J]. Bioresource Technology, 2015, 181:360-362.
    16 Liu G, Yates M D, Cheng S, et al. Examination of microbial fuel cell start-up times with domestic wastewater and additional amendments[J]. Bioresource Technology, 2011, 102(15):7 301-7 306.
    17 Sun M, Sheng G P, Zhang L, et al. An MEC-MFC-coupled system for biohydrogen production from acetate.Environmental Science&Technology, 2008, 42(21):8 095-8 100.
    18 Kuzmanovic M, Sem V, Laurens D, et al. The influence of draw ratio on morphology and thermal properties of MFCs based on PP and PET[C]. Ghent:Ghent University Press, 2016.
    19 樊磊,赵煜,李婷,等.葡萄糖乙酸钠不同基质微生物燃料电池电化学性能对比研究[J].电化学, 2016(1):81-87.
    20 蒋胜韬,管玉江,白书立,等.以苯酚为燃料的微生物燃料电池产电性能研究[J].环境污染与防治, 2013, 35(5):19-23.
    21 全向春,全燕苹,肖竹天.微生物燃料电池强化去除农药2,4-二氯苯氧乙酸及同步产电性能[J].环境科学, 2017.38(3):1 067-1 073.
    22 李婕,刘广立,张仁铎,等.葡萄糖和硝基苯为混合燃料时MFC的产电特性研究[J].环境科学, 2010, 31(11):2 811-2 817.
    23 佟海龙,黄力群,何燕,等.以不同底物和苯胺为燃料的微生物燃料电池的产电特性[J].环境工程学报, 2016, 10(1):480-484.
    24 喻铃隐,单室无膜空气阴极微生物燃料电池降解老龄垃圾渗滤液[D].重庆:重庆大学资源及环境科学学院,2016.
    25 华萌,王磊,李陈,等.微生物燃料电池降解邻苯二甲酸酯及同步产电特性[J].环境工程学报, 2017, 11(3):1 423-1 430.
    26 樊立萍,薛松.共基质改善MFC处理链霉素废水及产电性能的研究[J].燃料化学学报, 2017, 45(3):370-377.
    27 Crhistian C P, Etchebehere C, Celis L B, et al. Effect of inoculum pretreatment on the microbial community structure and its performance during dark fermentation using anaerobic fluidized-bed reactors[J]. International Journal of Hydrogen Energy, 2017, 42(15):9 589-9 599.
    28 Zhang L, Li J, Zhu X, et al. Startup performance and anodic biofilm distribution in continuous-flow microbial fuel cells with serpentine flow fields:Effects of external resistance[J]. Industrial&Engineering Chemistry Research, 2017,56(14):3 767-3 774.
    29 伍元东,吕乾川,贾红华,等.微生物燃料电池(MFC)处理垃圾渗滤液与同步产电性能[J].南京工业大学学报:自科版, 2017,39(4):37-42.
    30 Huzairy H, Jin B, Donner E, et al. Microbial community and bioelectrochemical activities in MFC for degrading phenol and producing electricity:Microbial consortia could make differences[J]. Chemical Engineering Journal,2018, 332(15):647-657.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700