萝卜硫素-玉米醇溶蛋白纳米水分散体制备及性质
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Preparation and physicochemical properties of sulforaphane-encapsulated zein aqueous nano-dispersions
  • 作者:田倚凡 ; 陈芳 ; 谭小路 ; 赵国华 ; 叶发银
  • 英文作者:TIAN Yifan;CHEN Fang;TAN Xiaolu;ZHAO Guohua;YE Fayin;College of Food Science,Southwest University;National Demonstration Center for Experimental Food Science and Technology Education(Southwest University);College of Environment and Resources,Chongqing Technology and Business University;
  • 关键词:萝卜硫素 ; 玉米醇溶蛋白 ; 纳米颗粒 ; 阿拉伯胶 ; 包埋
  • 英文关键词:sulforaphane;;zein;;nanoparticles;;gum arabic;;encapsulation
  • 中文刊名:SPFX
  • 英文刊名:Food and Fermentation Industries
  • 机构:西南大学食品科学学院;食品科学与工程国家级实验教学示范中心(西南大学);重庆工商大学环境与资源学院;
  • 出版日期:2018-10-18 16:28
  • 出版单位:食品与发酵工业
  • 年:2019
  • 期:v.45;No.373
  • 基金:国家自然科学基金青年科学基金项目(31601401);; 重庆市基础科学与前沿技术研究专项一般项目(cstc2017jcyjAX0430);; 重庆市教委科学技术研究项目(KJ1706170)
  • 语种:中文;
  • 页:SPFX201901019
  • 页数:7
  • CN:01
  • ISSN:11-1802/TS
  • 分类号:125-131
摘要
以低浓度的阿拉伯胶为稳定剂,采用反溶剂法制备萝卜硫素-玉米醇溶蛋白纳米水分散体,并对其理化性质及萝卜硫素的释放特性进行研究。结果表明:未包埋萝卜硫素的玉米醇溶蛋白-阿拉伯胶纳米颗粒平均粒径184. 1 nm,多分散指数0. 135,ζ-电位-33. 5 m V,包埋萝卜硫素的颗粒平均粒径159. 8~180. 2 nm,多分散指数0. 152~0. 198,ζ-电位-32. 1~-37. 5 m V,颗粒近球形;当萝卜硫素与玉米醇溶蛋白的质量比为1∶25时,包封率为92. 3%,载量43. 4 mg/g;随着二者质量比增加,包封率显著下降,载量增幅不大,约60. 6~78. 7 mg/g。随着pH升高,pH 2~4时颗粒平均粒径显著减小,pH 4~8时其变化不显著;随着环境温度升高,25~55℃时,颗粒平均粒径变化不显著,55~85℃,平均粒径从200 nm左右增加到350 nm左右。萝卜硫素释放结果表明,60 min内累计释放率接近50%,240 min内几乎完全释放。
        In this study,the sulforaphane-encapsulated zein aqueous nano-dispersions were prepared by anti-solvent method by using low concentrate gum arabic as a stabilizer. The physicochemical properties and releasing characteristics of sulforaphane were investigated. The results showed that the average size,polydispersity index(PDI),and zeta potential of zein/gum arabic nanoparticles without encapsulating sulforaphane were 184. 1 nm,0. 135 and-33. 5 m V,respectively. The size,PDI,and zeta potential of sulforaphane-encapsulated zein/gum arabic nanoparticles varied from 159. 8 nm to 180. 2 nm,0. 152 to 0. 198,and-32. 1 m V to-37. 5 m V,respectively. The TEM results showed that the nanoparticles were nearly spherical. When the weight ratio of sulforaphane to zein was 1∶ 25,the encapsulation efficiency and loading capacity were 92. 3% and 43. 4 mg/g,respectively. As the weight ratio increased,the encapsulation efficiency decreased significantly while loading capacity slightly increased in the range of 60. 6-78.7 mg/g. When the pH was increasing,the particle sizes of the nanoparticles at pH = 2-4 decreased significantly,while changes at pH 4-8 were insignificant. The particle size changed insignificantly at 25-55 ℃,while it increased from 200 nm to about 350 nm with an increase in ambient temperature(55-85 ℃). The results of released sulforaphane showed that the cumulative releasing rate within 60 min was nearly 50% and almost completely released within 240 min. This study provides an experimental reference for encapsulating of sulforaphane.
引文
[1] GLADE M J,Michael M M. A glance at…broccoli,glucoraphanin,and sulforaphane[J]. Nutrition,2015,31(9):1 175-1 178.
    [2] PRASAD A K,MISHRA P C. Mechanism of action of sulforaphane as a superoxide radical anion and hydrogen peroxide scavenger by double hydrogen transfer:a model for iron superoxide dismutase[J]. The Journal of Physical Chemistry,2015,119(25):7 825-7 836.
    [3]吴华彰,费鸿君,赵云利,等.萝卜硫素对大肠杆菌抑菌机制的研究[J].四川大学学报(医学版),2012,3(39):385-390.
    [4] ZHAO F,ZHANG J,CHANG N. Epigenetic modification of Nrf2 by sulforaphane increases the antioxidative and antiinflammatory capacity in a cellular model of Alzheimer's disease[J]. European Journal of Pharmacology,2018,824:1-10.
    [5] FIMOGNARI C,HRELIA P. Sulforaphane as a promising molecule for fighting cancer[J]. Mutation Research-Reviews in Mutation Research,2007,635(2-3):90-104.
    [6] JIN Y,WANG M,ROBERT T R,et al. Thermal degradation of sulforaphane in aqueous solution[J]. Journal of Agriculture and Food Chemistry,1999,47(8):3 121-3 123.
    [7]肖倩,梁浩,袁其朋.温度、p H和光照对莱菔硫烷水溶液稳定性的影响[J].中国药学杂志,2007, 42(3):193-196.
    [8] WU H,LIANG H,YUAN Q. Preparation and stability investigation of the inclusion complex of sulforaphane with hydroxypropyl-β-cyclodextrin[J]. Carbohydrate Polymers,2010,82(3):613-617.
    [9] WU Y,MAO J,MEI L,et al. Kinetic studies of the thermal degradation of sulforaphane and its hydroxypropyl-β-cyclodextrin inclusion complex[J]. Food Research International,2013,53(1):529-533.
    [10] WANG H,LIANG H,YUAN Q,WANG Tian-xin. A novel p H-sensitive microsphere composed of CM-chitosan and alginate for sulforaphane delivery[J]. Materials Science Forum,2011,687:539-547.
    [11] TIAN G,LI Y,YUAN Q,et al. The stability and degradation kinetics of sulforaphane in microcapsules based on several biopolymers via spray drying[J]. Carbohydrate Polymers,2015,122:5-10.
    [12]郭春静,李晓通,孙蕊,等.姜黄素-萝卜硫素共包载脂质体制备工艺研究[J].食品工业,2017,38(11):141-144.
    [13] DANAFAR H,SHARAFI A,MANJILI H K. Sulforaphane delivery using m PEG–PCL co-polymer nanoparticles to breast cancer cells[J]. Journal Pharmaceutical Development and Technology[J]. 2017,22(5):642-651.
    [14]许辰琪,袁芳,高彦祥.玉米醇溶蛋白作为传递载体研究进展[J].中国食品添加剂,2015,7:156-161.
    [15] PATEL A R,VELIKOV K P. Zein as a source of functional colloidal nano-and micro-structures[J]. Current Opinion in Colloid&Interface Science,2014,19(5):450-458.
    [16] ZHONG Q,JIN M. Zein nanoparticles produced by liquid-liquid dispersion[J]. Food Hydrocolloids,2009,23(8):2 380-2 387.
    [17] LI K,YIN S,YIN Y,et al. Preparation of water-soluble antimicrobial zein nanoparticles by a modified antisolvent approach and their characterization[J]. Journal of Food Engineering,2013,119(2):343-352.
    [18] da ROSA C G,de OLIVEIRA BRISOLA MACIEL M V,de CARVALHO S M,et al. Characterization and evaluation of physicochemical and antimicrobial properties of zein nanoparticles loaded with phenolics monoterpenes[J].Colloids and Surfaces A:Physicochemical and Engineering Aspects,2015,481:337-344.
    [19] LI S,WANG X,LI W,et al. Preparation and characterization of a novel conformed biopolymer paclitaxel-nanoparticle using tea polysaccharides and zein[J]. Carbohydrate Polymers,2016,146:52-57.
    [20] HU K,MCCLEMENTS D J. Fabrication of biopolymer anoparticles by antisolvent precipitation and electrostatic deposition:Zein-alginate core/shell nanoparticles[J].Food Hydrocolloids,2015,44:101-108.
    [22] DONG F,DONG Xi,ZHOU L,et al. Doxorubicin-loaded biodegradable self-assembly zein nanoparticle and its anti-cancer effect:Preparation,in vitro evaluation,and cellular uptake[J]. Colloids and Surfaces B:Biointerfaces,2016,140:324-331.
    [22] WU Y,ZOU L,MAO J,et al. Stability and encapsulation efficiency of sulforaphane microencapsulated by spray drying[J]. Carbohydrate Polymers,2014,102:97-503.
    [23] PENALVA R,ESPARZA I,GONZALEZ-NAVARRO C J,et al. Zein nanoparticles for oral folic acid delivery[J]. Journal of Drug Delivery Science and Technology,2015,30:450-457.
    [24] LUO Y,ZHANG B,WHENT M,et al. Preparation and characterization of zein/chitosan complex for encapsulation ofα-tocopherol,and its in vitro controlled release study[J]. Colloids and Surfaces B:Biointerfaces,2011,85(2):145-152.
    [25]傅玉颖,李可馨,王美,等. GA-zein复合纳米粒子运载姜黄色素体系的制备与特性[J].农业机械学报,2017,48(1):267-274.
    [26] PODARALLA S,PERUMAL O. Influence of formulations factors on the preparation of zein nanoparticles[J]. Aaps Pharmscitech,2012,13(3):919-927.
    [27] DROR Y,COHEN Y,YERUSHALMI-ROZEN R. Structure of gum arabic in aqueous solution[J]. Journal of Polymer Science Part B:Polymer Physics,2006,44(2):3 265-3 271.
    [28] LIU S,ELMER C,LOW N H,et al. Effect of p H on the functional behaviour of pea protein isolate–gum Arabic complexes[J]. Food Research International,2010,43(2):489-495.
    [29] MOSCHAKIS T,MURRAY B S,BILIADERIS C G.Modifications in stability and structure of whey proteincoated o/w emulsions by interacting chitosan and gum arabic mixed dispersions[J]. Food Hydrocolloids,2010,24(1):8-17.
    [30] CHEN H,ZHONG Q. A novel method of preparing stable zein nanoparticle dispersions for encapsulation of peppermint oil[J]. Food Hydrocolloids,2015,43:593-602.
    [31] CHEN J,ZHENG J,MCCLEMENTS D J,et al. Tangeretin-loaded protein nanoparticles fabricated from zein/β-lactoglobulin:Preparation, characterization, and functional performance[J]. Food Chemistry,2014,158:466-472.
    [32] KO J Y,CHOI Y J,JEONG G J,et al. SulforaphanePLGA microspheres for the intra-articular treatment of osteoarthritis[J]. Biomaterials,2013,34(21):5 359-5 368.
    [33] CHUACHAROEN T,SABLIOV C M. Stability and controlled release of lutein loaded in zein nanoparticles with and without lecithin and pluronic F127 surfactants[J].Colloids and Surfaces A:Physicochemical and Engineering Aspects,2016,503:11-18.
    [34] PARRIS N,COOKE P H,Hicks K B. Encapsulation of essential oils in zein nanospherical particles[J]. Journal of Agricultural and Food Chemistry,2005,53(12):4 788-4 792.
    [35] DONSìF,VOUDOURIS P,SANDRA J V,et al. Zeinbased colloidal particles for encapsulation and delivery of epigallocatechin gallate[J]. Food Hydrocolloids,2017,63:508-517.
    [36] ALI B H,ZIADA A,BLUNDEN G. Biological effects of gum arabic:A review of some recent research[J]. Food and Chemical Toxicology,2009,47(1):1-8.
    [37] FRANKLIN S J,DICKINSON S E,KARLAGE K L,et al. Stability of sulforaphane for topical formulation[J].Drug Development&Industrial Pharmacy,2014,40(4):494-502.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700