基于谱分析和裂纹扩展方法的舱口角隅疲劳寿命预报方法
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Fatigue Life Prediction of a Hatch Corner Based on the Spectral Analysis and Fatigue Crack Growth Approaches
  • 作者:余宏淦 ; 黄小平 ; 张永矿
  • 英文作者:YU Honggan;HUANG Xiaoping;ZHANG Yongkuang;Collaborative Innovation Center for Advanced Ship and Deep-Sea Exploration, Shanghai Jiao Tong University;
  • 关键词:舱口角隅 ; 裂纹扩展路径 ; 谱分析 ; 断裂力学 ; 疲劳寿命
  • 英文关键词:hatch corner;;crack propagation paths;;spectral analysis;;fracture mechanics;;fatigue life
  • 中文刊名:SHJT
  • 英文刊名:Journal of Shanghai Jiaotong University
  • 机构:上海交通大学高新船舶与深海开发装备协同创新中心;
  • 出版日期:2019-02-28
  • 出版单位:上海交通大学学报
  • 年:2019
  • 期:v.53;No.396
  • 基金:国家自然科学基金资助项目(51439004);; 国家重点基础研发规划(973)项目(2013CB036105)
  • 语种:中文;
  • 页:SHJT201902005
  • 页数:8
  • CN:02
  • ISSN:31-1466/U
  • 分类号:31-38
摘要
以某超大型集装箱船驾驶室前椭圆形角隅为例,采用谱分析结合裂纹扩展方法预报角隅疲劳寿命.首先通过水动力和结构响应分析得到全船响应,获得角隅在不同工况下的应力分布,并依此选定可能的起裂位置.然后将全船分析结果作为ANSYS中建立的带裂纹角隅模型二次分析的边界条件,求解应力强度因子并采用最大周向应力准则(MCSC)得到角隅在不同工况下的裂纹扩展路径,在大量计算的基础上回归出相应的角隅裂纹应力强度因子经验公式.最后依据ABS船级社推荐的谱分析法构建疲劳载荷谱,采用单一曲线模型和所获得角隅裂纹应力强度因子经验公式预报角隅疲劳寿命,为角隅疲劳寿命的校核提供参考.
        Hatch corner is a typical stress concentration area in a large opening ship, and is a crucial structure detail for fatigue assessment. In this paper, an elliptic hatch corner ahead of the cabin in an ultra large container ship was taken as an example to research the assessment of the fatigue life of hatch corner based on the spectral analysis and fatigue crack growth method. Firstly, the hydrodynamic and structural response analysis were performed to get the whole ship's structural responses and the stress distribution in the hatch corner under different loading conditions, and then determine the possible crack initiation positions on the hatch corner. Secondly, the analysis results were taken as boundary conditions of FE hatch corner model with crack which is built via ANSYS, SIF(Stress Intensity Factor) was obtained. Taking the maximum circumferential stress criterion(MCSC), propagation paths of crack in the hatch corner under different load cases were gotten, then regression was used to establish a corresponding empirical formula of SIF based on a large series of analysis. Finally, the spectral analysis approach recommended by ABS was adopted to construct the fatigue load spectrum, and the Single Curve Model and the proposed empirical formula were used to predict the fatigue life of the hatch corner. The results could provide a reference for fatigue assessment of hatch corner.
引文
[1]余小川,唐永生,李润培,等. 8530TEU集装箱船船舯上甲板角隅疲劳寿命预估[J].中国造船, 2006, 47(4):101-105. YU Xiaochuan, TANG Yongsheng, LI Runpei, et al. Fatigue life predication of upperdeck hatch corners in midship area of a 8530TEU Container Ship[J]. Ship Building of China, 2006, 47(4):101-105.
    [2]蔡乾亚,杨永谦,裘泳铭.集装箱船舱口角隅的应力集中及其结构形式[J].上海交通大学学报, 1996, 30(8):125-129. CAI Qianya, YANG Yongqian, QIU Yongming. Research on stress concentration and structure models of container ship hatch corner[J]. Journal of Shanghai Jiao Tong University, 1996, 30(8):125-129.
    [3]中国船级社.集装箱船结构强度直接计算指南[M].北京:人民交通出版社, 2005. CCS. Guidelines for direct strength analysis of container ship[M]. Beijing:China Communication Press, 2005.
    [4]MAO W. Development of a spectral method and a statistical wave model for crack propagation prediction in ship structures[J]. Journal of Ship Research, 2014, 58(2):479-499.
    [5]ABS. Guide for spectral-based fatigue analysis of vessels[M].Houston:ABS Plaza, 2016:1-33.
    [6]HUANG X, TORGEIR M, CUI T W. A unique crack growth rate curve method for fatigue life prediction of steel structures[J]. Ships and Offshore Structures, 2009, 4(2):165-173.
    [7]HUANG X, TORGEIR M, CUI W. An engineering model of fatigue crack growth under variable amplitude loading[J]. International Journal of Fatigue, 2008, 30(1):2-10.
    [8]HUANG X. Fatigue crack growth rate recommended in BS7910 and an unique crack growth rate curve under different load ratios[C]//American Society of Mechanical Engineers. San Antonio:ASME, 2007:1-7.
    [9]HUANG X, TORGEIR M. Improved modeling of the effect of R-ratio on crack growth rate[J]. International Journal of Fatigue, 2007, 29(4):591-602.
    [10]HU Zhiqiang, LI Runpei, QIN Hongde. Analysis on global hull strength and fatigue strength of hatch-corners for an 8530 TEU containership[J]. Shanghai Shipbuilding, 2006, 66(2):16-20.
    [11]ABS. Rules for building and classing steel vessels[M]. Huston:American Bureau of Shipping, 2010.
    [12]SUMI Y, YANG C, WANG Z N. Morphological aspects of fatigue crack propagation. Part II. Effects of stress biaxiality and welding residual stress[J]. International Journal of Fracture, 1996, 82(3):221-235.
    [13]ERDOGAN F, SIH G C. On the crack extension in plates under plane loading and transverse shear[J]. Journal of Basic Engineering, 1963, 85(4):527.
    [14]SIH G C. Strain-energy-density factor applied to mixed mode crack problems[J]. International Journal of Fracture, 1974, 10(3):305-321.
    [15]BOUCHARD P O, BAY F, CHASTEL Y. Numerical modelling of crack propagation:automatic remeshing and comparison of different criteria[J]. Computer Methods in Applied Mechanics&Engineering, 2003, 192(35/36):3887-3908.
    [16]BITTENCOURT T N, WAWRZYNEK P A, INGRAFFEA A R, et al. Quasi-automatic simulation of crack progation for 2D LEFM problems[J]. Engineering Fracture Mechanics, 1996, 55(2):321-334.
    [17]BS7910. Guide to methods for assessing the acceptability of flaws in metallic structures[M]. London:British Standards Institution, 2005.
    [18]DNV. Fatigue assessment of ship structures[M]. Norway:Det Norske Veritas, 2003.
    [19]HUANG X, YAN X, WANG K. Discussion of fatigue loading spectrum on crack propogation in a ship detail[C]//American Society of Mechanical Engineers. San Francisco:ASME, 2014.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700