超临界压力下竖直圆管内正癸烷对流换热不稳定性实验
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Experiment on Flow and Convective Heat Transfer Instability of N-Decane in a Vertical Tube at Supercritical Pressures
  • 作者:严俊杰 ; 赵然 ; 闫帅 ; 祝银海 ; 姜培学
  • 英文作者:YAN Jun-jie;ZHAO Ran;YAN Shuai;ZHU Yin-hai;JIANG Pei-xue;Key Laboratory for Thermal Science and Power Engineering of Ministry of Education,Department of Thermal Engineering,Tsinghua University;
  • 关键词:超临界压力流体 ; 碳氢燃料 ; 对流换热 ; 不稳定性 ; 超燃冲压发动机
  • 英文关键词:Supercritical pressure fluid;;Hydrocarbon fuel;;Convective heat transfer;;Instability;;Scramjet
  • 中文刊名:TJJS
  • 英文刊名:Journal of Propulsion Technology
  • 机构:热科学与动力工程教育部重点实验室清华大学热能工程系;
  • 出版日期:2017-01-11 14:24
  • 出版单位:推进技术
  • 年:2017
  • 期:v.38;No.236
  • 基金:国家自然科学基金创新群体科学基金(51621062);国家自然科学基金重点项目(51536004)
  • 语种:中文;
  • 页:TJJS201702025
  • 页数:7
  • CN:02
  • ISSN:11-1813/V
  • 分类号:215-221
摘要
超临界压力正癸烷为工质,在内径2mm的竖直圆管内进行了不同工况条件下的流动与换热不稳定性实验研究。实验发现两种原理的不稳定性现象。转捩型是由于流动状态由层流向湍流转变引起,多为随机的小幅震荡,约在Re=5000左右出现;物性型由准临界温度附近剧烈变化物性所致,具有较大振幅和固定周期,约8~15s。增强系统稳定性的方法主要包括提高进口流体温度、升高压力或者采用向下流动方式。实验还发现在振荡区间内存在稳定区间现象。
        This work presents the experimental studies on the flow and heat transfer instabilities of supercritical pressure n-decane in a vertical tube with an inner diameter of 2mm at various conditions. Two types of instabilities were observed,including the transition pattern and the thermal property pattern. The transition pattern was caused by the transition of flow from laminar flow to turbulent flow with random and relatively small amplitudes when Re was about 5000,while the thermal property pattern was caused by the variation of thermal properties near pseudo critical temperature with large amplitudes and constant periods of 8 to 15 seconds. Raising the inlet bulk fluid temperature,raising the pressure or using downward direction may make the system more stable.The stable sections were also observed in the experiments.
引文
[1]Edwards T.Cracking and Deposition Behavior of Supercritical Hydrocarbon Aviation Fuels[J].Combustion Science and Technology,2006,178(1):307-334.
    [2]Huang He,Spadaccini L J,Sobel D R.Fuel-Cooled Thermal Management for Advanced Aeroengines[J].Journal of Engineering for Gas Turbines and Power,2004,126(2):284-293.
    [3]Jackson J D,Hall W B.Forced Convection Heat Transfer to Fluids at Supercritical Pressure[C].New York:Hemisphere Publishing Corporation,1979:563-611.
    [4]Jackson J D,Hall W B.Influences of Buoyancy on Heat Transfer to Fluids Flowing in Vertical Tubes under Turbulent Conditions[C].New York:Hemisphere Publishing Corporation,1979:613-640.
    [5]JIANG Pei-xue,ZHANG Yu,XU Yi-jun,et al.Experimental and Numerical Investigation of Convection Heat Transfer of CO2at Supercritical Pressures in a Vertical Tube at Low Reynolds Numbers[J].International Journal of Thermal Sciences,2008,47(8):998-1011.
    [6]JIANG Pei-xue,ZHANG Yu,ZHAO Chen-ru,et al.Convection Heat Transfer of CO2at Supercritical Pressures in a Vertical Mini Tube at Relatively Low Reynolds Numbers[J].Experimental Thermal and Fluid Science,2008,32(8):1628-1637.
    [7]Pidaparti S,Mc Farland J.Effect of Buoyancy on Heat Transfer Characteristics of Supercritical Carbon Dioxide in the Heating Mode[R].AIAA 2014-3359.
    [8]LIU Bo,ZHU Yin-hai,YAN Jun-jie,et al.Experimental Investigation of Convection Heat Transfer of nDecane at Supercritical Pressures in Small Vertical Tubes[J].International Journal of Heat and Mass Transfer,2015,91:734-746.
    [9]赵国柱,宋文艳,张若凌,等.超临界压力下正十烷流动传热的数值模拟[J].推进技术,2014,35(4):537-543.(ZHAO Guo-zhu,SONG Wen-yan,ZHANG Ruo-ling,et al.Numerical Simulation on Flow and Heat Transfer of n-Decane under Supercritical Pressure[J].Journal of Propulsion Technology,2014,35(4):537-543.)
    [10]Hitch B,Karpuk M.Experimental Investigation of Heat Transfer and Dlow Instabilities in Supercritical Fuels[R].AIAA 97-3043.
    [11]Hitch B,Karpuk M.Enhancement of Heat Transfer and Elimination of Flow Oscillations in Supercritical Fuels[R].AIAA 98-3759.
    [12]Ambrosini W,Sharabi M.Dimensionless Parameters in Stability Analysis of Heated Channels with Fluids at Supercritical Pressures[J].Nuclear Engineering and Design,2008,238(8):1917-1929.
    [13]Sharabi M,Ambrosini W,He S,et al.Transient Three-Dimensional Stability Analysis of Supercritical Water Reactor Rod Bundle Subchannels by a Computatonal Fluid Dynamics Code[J].Journal of Engineering for Gas Turbines and Power,2009,131(2).
    [14]Ambrosini W.On the Analogies in the Dynamic Behaviour of Heated Channels with Boiling and Supercritical Fluids[J].Nuclear Engineering and Design,2007,237(11):1164-1174.
    [15]Ambrosini W.Discussion on the Stability of Heated Channels with Different Fluids at Supercritical Pressures[J].Nuclear Engineering and Design,2009,239(12):2952-2963.
    [16]Hunt S,Heister S D.Thermoacoustic Oscillations in Supercritical Fuel Flows[R].AIAA 2014-3973.
    [17]Stewart E,Stewart P,Watson A.Thermo-Acoustic Oscillations in Forced Convection Heat Transfer to Supercritical Pressure Water[J].International Journal of Heat and Mass Transfer,1973,16(2):257-270.
    [18]王彦红,李素芬,东明,等.超临界压力航空煤油热声振荡与传热恶化实验研究[J].推进技术,2016,37(3):401-410.(WANG Yan-hong,LI Su-fen,DONG Ming,et al.Experimental Studies on Thermoacoustic Oscillation and Heat Transfer Deterioration of Aviation Kerosene under Supercritical Pressure[J].Journal of Propulsion Technology,2016,37(3):401-410.)
    [19]YAN Jun-jie,ZHU Yin-hai,LU Ze-long,et al.Transient Response of Supercritical Pressure Hydrocarbon Fuels during Heating Condition[J].CIESC Journal,2015,66(S1):65-70.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700