超临界碳氢燃料流动换热的一维模型
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:One-dimensional model of flow and heat transfer of supercritical hydrocarbon fuel
  • 作者:李海旺 ; 王渊 ; 朱剑琴 ; 胡希卓 ; 陶智
  • 英文作者:LI Haiwang;WANG Yuan;ZHU Jianqin;HU Xizhuo;TAO Zhi;National Key Laboratory of Science and Technology on Aero-Engine Aero-thermodynamics,School of Energy and Power Engineering,Beijing University of Aeronautics and Astronautics;
  • 关键词:超临界 ; 正癸烷 ; 驻留时间 ; 裂解度 ; 一维稳态
  • 英文关键词:supercritical;;n-decane;;dwell time;;pyrolysis ratio;;one-dimensional steady state
  • 中文刊名:HKDI
  • 英文刊名:Journal of Aerospace Power
  • 机构:北京航空航天大学能源与动力工程学院航空发动机气动热力国家级重点实验室;
  • 出版日期:2017-10-13 16:08
  • 出版单位:航空动力学报
  • 年:2017
  • 期:v.32
  • 基金:基础科研计划(B2120132006);; 国家自然科学基金(51406005)
  • 语种:中文;
  • 页:HKDI201710004
  • 页数:8
  • CN:10
  • ISSN:11-2297/V
  • 分类号:33-40
摘要
考虑水平圆管内燃料流动换热过程和裂解反应及结焦过程之间的相互影响,提出一个一维稳态模型来研究碳氢燃料的流动换热过程与裂解反应的耦合特性。选用正癸烷作为替代燃料,裂解反应采用正癸烷裂解的一步总体化学反应模型,结焦过程采用一维结焦工程模型进行数值模拟,结果表明裂解反应能够强化换热。选择不同的管壁面热流密度、进口压力和质量流量等典型工况进行模拟,表明流动换热过程影响燃料裂解反应速率和在管内的驻留时间,从而影响裂解度。计算结果与实验数据的对比表明了程序的可靠性,加上一维程序计算效率高的优点,可将应用于快速工程计算,并为三维数值模拟提供支持。
        Considering the mutual influence between fuel flow and heat transfer process and pyrolysis reaction and coking process in horizontal circular tube,a one-dimensional steady-state model was proposed to study the coupling characteristics of hydrocarbon fuel flow and heat transfer process and pyrolysis reaction.n-decane was chosen as the alternative fuel,pyrolysis reaction used one-step chemical reaction model and coking process used a onedimensional coking engineering model for numerical simulation.The overall results showed that the pyrolysis reaction can strengthen heat transfer,and different wall heat flux,inlet pressure and mass flow rate were chosen to simulate the typical working conditions.The overall results showed that flow and heat transfer process influenced fuel's pyrolysis reaction rate and dwell time in the tube,thus affecting pyrolysis ratio.The comparisons of the calculated results with the experimental data show the reliability of the program,which can be applied to swift engineering calculation combined with the advantage of high calculation effi-ciency,and will provide a support for three-dimensional numerical simulation.
引文
[1]EDWARDS T.Liquid fuels and propellants for aerospace propulsion:1903-2003[J].Journal of Propulsion and Power,2003,19(6):1089-1107.
    [2]HUA Y X,WANG Y Z,HUA M.A numerical study of supercritical forced convective heat transfer of n-heptane inside a horizontal miniature tube[J].Journal of Supercritical Fluids,2010,52(1):36-46.
    [3]KANDA T,MASUYA G,WAKAMATSU Y,et al.Parametric study of airframe-integrated scramjet cooling requirement[J].Journal of Propulsion and Power,1991,7(3):431-436.
    [4]HUANG H,SOBEL D R,SPADACCINI L J.Endothermic heat-sink of hydrocarbon fuels for scramjet cooling[R].AIAA-2002-3871,2002.
    [5]焦毅,李军,王静波,等.正癸烷热裂解实验和动力学模拟[J].物理化学学报,2011,27(5):1061-1067.JIAO Yi,LI Jun,WANG Jingbo,et al.Experiment and kinetics simulation on the pyrolysis of n-decane[J].Acta Physico-Chimica Sinica,2011,27(5):1061-1067.(in Chinese)
    [6]李军,邵菊香,刘存喜,等.碳氢燃料热裂解机理及化学动力学模拟[J].化学学报,2010,68(3):239-245.LI Jun,SHAO Juxiang,LIU Cunxi,et al.Pyrolysis mechanism of hydrocarbon fuels and kinetic modeling[J].Acta Chimica Sinica,2010,68(3):239-245.(in Chinese)
    [7]ZHONG F Q,FAN X J,YU G,et al.Thermal cracking of aviation kerosene for scramjet applications[J].Science in China,2009,52(9):2644-2652.
    [8]ZHONG F Q,FAN X J,YU G,et al.Thermal cracking and heat sink capacity of aviation kerosene under supercritical conditions[J].Journal of Thermophysics and Heat Transfer,2011,25(6):1226-1232.
    [9]WARD T A,ERVIN J S,ZABARNICKS,et al.Pressure effects on flowing mildly-cracked n-decane[J].Journal of Propulsion and Power,2005,21(2):344-355.
    [10]WARD T,ZABARNICK S,ERVIN J,et al.Simulations of flowing mildly-cracked normal alkanes incorporating proportional product distributions[J].Journal of Propulsion and Power,2004,20(3):394-402.
    [11]TRAN L.Heat transfer calculation of an endothermic fuel at supercritical conditions[R].AIAA 98-3762,1998.
    [12]GASCOIN N,GILLARD P,DUFOUR E,et al.Validation of transient cooling modeling for hypersonic application[J].Journal of Thermophysics and Heat Transfer,2007,21(1):86-94.
    [13]鲍文,李献领,秦江,等.碳氢燃料流动换热与裂解反应的建模及仿真[J].工程热物理学报,2011,32(10):1765-1771.BAO Wen,LI Xianling,QIN Jiang,et al.Modelling and simulation of flow with heat transfer and cracking reaction for hydrocarbon[J].Journal of Engineering Thermophysics,2011,32(10):1765-1771.(in Chinese)
    [14]鲍文,李献领,周伟星,等.细长圆管内超临界碳氢燃料换热特性研究[C]∥中国工程热物理学会传热传质学学术会议论文集.上海:中国工程热物理学会,2010:103379.1-103379.9.
    [15]张磊,乐嘉陵,张若凌,等.超临界压力下湍流区碳氢燃料传热研究[J].推进技术,2013,34(2):225-229.ZHANG Lei,LE Jialing,ZHANG Ruoling,et al.Heat transfer of hydrocarbon fuel in turbulent flow region under supercritical pressure[J].Journal of Propulsion Technology,2013,34(2):225-229.(in Chinese)
    [16]程泽源,朱剑琴,金钊.吸热型碳氢燃料RP-3替代模型研究[J].航空动力学报,2016,31(2):391-398.CHENG Zeyuan,ZHU Jianqin,JIN Zhao.Study on surrogate model of endothermic hydrocarbon fuel RP-3[J].Journal of Aerospace Power,2016,31(2):391-398.(in Chinese)
    [17]刘波.超临界压力流体在圆管内对流换热及热裂解研究[D].北京:清华大学,2013.LIU Bo.Researches on in-tube convection heat transfer and thermal cracking of supercritical pressure fluids[D].Beijing:Tsinghua University,2013.(in Chinese)

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700