深部煤层超临界甲烷吸附量预测研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Prediction of Supercritical Methane Adsorption in Deep Coal Seam
  • 作者:柴琳 ; 吴世跃 ; 牛煜 ; 魏杰
  • 英文作者:CHAI Lin;WU Shiyue;NIU Yu;WEI Jie;School of Mining Engineering,Taiyuan University of Technology;
  • 关键词:甲烷 ; 超临界吸附 ; 吸附势理论 ; 等量吸附热 ; 吸附量预测
  • 英文关键词:methane;;supercritical adsorption;;adsorption potential theory;;equal adsorption heat;;adsorption prediction
  • 中文刊名:ENER
  • 英文刊名:Mining Safety & Environmental Protection
  • 机构:太原理工大学矿业工程学院;
  • 出版日期:2018-08-10
  • 出版单位:矿业安全与环保
  • 年:2018
  • 期:v.45;No.240
  • 语种:中文;
  • 页:ENER201804006
  • 页数:5
  • CN:04
  • ISSN:50-1062/TD
  • 分类号:33-37
摘要
为了预测深部煤层超临界甲烷吸附量,构建了吸附势模型与等量吸附热模型,探究了这2种模型在预测超临界甲烷吸附量时的误差。根据温度300.5 K和323.0 K条件下的等温吸附数据,分别应用2种模型预测了温度313.0 K条件下的超临界甲烷吸附量,并与实测值进行对比,结果表明:研究超临界吸附时要修正压力;等量吸附热模型可应用在超临界吸附领域,当压力为6.0~7.5 MPa时,吸附量预测值平均相对误差为3.17%,吸附势模型预测值平均相对误差为3.60%;随着压力的增加,吸附势模型预测误差逐渐减小,而等量吸附热模型预测误差呈增大趋势;当压力小于6.99 MPa时,等量吸附热模型预测误差较小;当压力超过6.99 MPa时,吸附势模型预测效果较好。综合分析预测结果,2种模型的预测误差均在工程允许误差范围以内,而吸附势模型计算过程简单、需要的数据较少,在工程应用领域适用性更好。
        In order to predict the supercritical methane adsorption in deep coal seam,the adsorption potential model and the equal adsorption heat model were constructed. The error of this two models in predicting the supercritical methane adsorption was investigated. According to isothermal adsorption data at the temperature of 300. 5 K and 323. 0 K,the supercritical methane adsorption at the temperature of 313. 0 K was predicted by two models respectively,and compared with the measured values. The results showed that the pressure should be corrected in the study of supercritical adsorption; the equal adsorption heat model can be used in the field of supercritical adsorption,the average relative error of the equal adsorption heat model is 3. 17% and the average relative error of the adsorption potential model is 3. 60% when the pressure is from 6. 0 MPa to 7. 5 MPa; with the increase of pressure,the prediction error of the adsorption potential model decreases gradually while the prediction error of the other model is increasing; when the pressure is below 6. 99 MPa,the equal adsorption heat model is better in prediction; when the pressure is beyond 6. 99 MPa,the adsorption potential model about prediction result is better. In totally,the prediction error of two models are within the engineering allowable error range,but the adsorption potential model is simple and requires less data,and it has better applicability in engineering application.
引文
[1]秦勇,申健.论深部煤层气基本地质问题[J].石油学报,2016,37(1):125-136.
    [2]OZAWA S,KUSUMI S,OGINO Y.Physical adsorption of gases at high pressure IV An improvement of the DubininAstakhov adsorption equation[J].Journal of Colloid Interface Science,1976,56(1):83-91.
    [3]BERING B P,DUBININ M M,SERPINSKY V V.Theory of volume filling for vapor adsorption[J].Journal of Colloid Interface Science,1966,21(4):378-393.
    [4]陈润,秦勇,杨兆彪,等.煤层气吸附及其地质意义[J].煤炭科学技术,2009,37(8):103-107.
    [5]MEN’SHCHIKOV I E,FOMKIN A A,ARABEI A B,et al.Description of methane adsorption on microporous carbon adsorbents on therange of supercritical temperatures on the basis of the Dubinin-Astakhovequation[J].Protection of Metals and Physical Chemistry of Surfaces,2016,52(4):575-580.
    [6]HAO S X,CHU W,JIANG Q,et al.Methane adsorption characteristics on coal surface above critical temperature through Dubinin-Astakhov model and Langmuir model[J].Colloids and Surfaces A:Physicochemical and Engineering Aspects,2014(4):104-113.
    [7]岳基伟,岳高伟,谢策.高低温环境下煤吸附瓦斯的吸附平衡及热力学研究[J].矿业安全与环保,2015,42(5):10-14.
    [8]杨银磊,陈有强,高健勋,等.温度对煤体瓦斯吸附量影响规律的试验研究[J].矿业安全与环保,2016,43(4):6-9.
    [9]安淑萍,李靖,于鹏亮,等.不同温度条件下页岩储层吸附能力预测模型[J].西安科技大学学报,2016,36(2):235-242.
    [10]AMBROSE R J,HARTMAN R C,DIAZ-CAMPOS M,et al.Shale gas-in-place calculations part I:new pore-scale considerations[J].SPE Journal,2012,17(1):219-229.
    [11]岳高伟,王兆丰,康博.基于吸附热理论的煤—甲烷高低温等温吸附线预测[J].天然气地球科学,2015,26(1):148-153.
    [12]蔺亚兵,马东民,刘钰辉,等.温度对煤吸附甲烷的影响实验[J].煤田地质与勘探,2012,40(6):24-28.
    [13]张力,何学秋,聂百胜.煤吸附瓦斯过程的研究[J].矿业安全与环保,2000,27(6):1-4.
    [14]DUBININ M M.The potential theory of adsorption of gases and vapors for adsorbents with energetically nonuniform surfaces[J].Chemical Reviews,1960,60(2):235-241.
    [15]杨兆彪,秦勇,高弟,等.超临界条件下煤层甲烷视吸附量,真实吸附量的差异及其地质意义[J].天然气工业,2011,31(4):13-16.
    [16]郇璇,张小兵,韦欢文.基于不同类型煤吸附甲烷的吸附势重要参数探讨[J].煤炭学报,2015,40(8):1859-1864.
    [17]解晨,郑青榕.甲烷在活性炭上的超临界温度吸附实验及理论分析[J].天然气化工,2012,37(1):40-44.
    [18]时钧,汪家鼎,余国琮,等.化学工程手册[M].2版.北京:化学工业出版社,1996.
    [19]ZHOU L,ZHOU Y P.Determination of compressibility factor and fugacity coefficient of hydrogen in studies of adsorptive storage[J].International Journal of Hydrogen Energy,2001,26(6):597-601.
    [20]高然超.基于吸附势理论的构造煤甲烷吸附/解吸规律研究[D].焦作:河南理工大学,2012.
    [21]柴琳,吴世跃,牛煜.基于吸附势理论的煤吸附超临界甲烷研究[J].煤矿安全,2017,48(1):21-23.
    [22]崔永君,张庆玲,杨锡禄.不同煤的吸附性能及等量吸附热的变化规律[J].天然气工业,2003,23(4):130-131.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700