主动柔性后缘气动特性优化
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Aerodynamic Characteristics Optimization of Active Compliant Trailing Edge
  • 作者:聂瑞 ; 裘进浩 ; 季宏丽 ; 郝林 ; 张琛
  • 英文作者:NIE Rui;QIU Jin-Hao;JI Hong-Li;HAO Lin;ZHANG Chen;State Key Laboratory of Mechanics and Control of Mechanical Structures, College of Aerospace Engineering, Nanjing University of Aeronautics and Astronautics;
  • 关键词:主动柔性后缘 ; 自适应机翼 ; 自适应激波控制鼓包 ; 超临界翼型
  • 英文关键词:active compliant trailing edge;;adaptive wing;;adaptive shock control bump;;supercritical airfoil
  • 中文刊名:GCRB
  • 英文刊名:Journal of Engineering Thermophysics
  • 机构:南京航空航天大学航空宇航学院机械结构力学及控制国家重点实验室;
  • 出版日期:2019-01-15
  • 出版单位:工程热物理学报
  • 年:2019
  • 期:v.40
  • 基金:国家自然科学基金资助项目(No.11372133);; 江苏高校优势学科建设工程资助项目(PAPD);; 国家重点基础研究发展计划项目(No.2015CB057501);; 中央高校基本科研业务费专项资金资助项目(No.NE2015101,No.NP2016201)
  • 语种:中文;
  • 页:GCRB201901011
  • 页数:9
  • CN:01
  • ISSN:11-2091/O4
  • 分类号:70-78
摘要
为提高超临界翼型不同飞行条件下的气动性能,提出了一种能够连续变弯度的自适应机翼后缘设计概念:主动柔性后缘(Active Compliant Trailing Edge,ACTE)。ACTE采用了分布式柔顺机构设计概念,利用高强度玻璃纤维层合板作为蒙皮,既能满足结构承载要求,又能实现后缘弯度连续变化。仿真结果表明,通过改变后缘的偏转模式可以优化不同飞行状态下翼型的气动特性。在速度小于阻力发散马赫数时(Ma=0.6),应用主动柔性后缘,最大升阻比提高了7.96%,大幅改善了高升力系数下的气动性能。在阻力发散马赫数附近(Ma=0.73),由于波阻的增加,主动柔性后缘效率降低。为减小波阻,利用自适应激波控制鼓包(Adaptive Shock Control Bump, ASCB)对激波进行控制,改善翼型高亚音速气动特性,最大升阻比提高约10%。
        A realizable design concept of continuous trailing edge variable camber adaptive wing(Active Compliant Trailing Edge, ACTE) is designed and developed to improve the aerodynamic performance of supercritical airfoil under different conditions. Making use of the distributed compliant mechanism, the proposed ACTE here employed the high-strength glass fiber laminates as the skin material to meet the requirements of structural load and realize the continuous deformation of trailing edge camber. The simulation results demonstrated that the aerodynamic performance of the airfoil can be optimized by modulating the deflection mode of the trailing edge wing. When velocity is below drag divergence Mach number(Ma=0.6), the application of ACTE is capable of inducing significant aerodynamic performance enhancement under high lift coefficient and the maximum lift-to-drag ratio could be raised by 7.96%. Furthermore, in the case of velocity located in the vicinity of divergence Mach number(Ma=0.73), a down-trend is observed in the efficiency of the ACTE with the increase of wave drag. Aiming at reducing the wave drag, adaptive shock control bump is utilized to tune the shock wave, improving the high subsonic speed aerodynamic characteristics of the airfoil where a maximum lift-drag ratio increment of 10% can be achieved.
引文
[1] Decamp R, Hardy R. Mission Adaptive Wing Advanced Research Concepts[C]//11~(th)Atmospheric Flight Mechanics Conference. USA:AIAA, 1984:AIAA 465-470
    [2] Gilbert W. Development of a Mission Adaptive Wing System for a Tactical Aircraft[C]//Aircraft Systems Meeting. USA:AIAA, 1980:65-81
    [3] Bartley-cho J D, Wang D P, Martin C A, et al. Development of High-Rate, Adaptive Trailing Edge Control Str-face for the Smart Wing Phase 2 Wind Tunnel Model[J]. Journal of Intelligent Material Systems&Structures,2004, 15(4):279-291
    [4] Kota S, Osborn R, Ervin G, et al. Mission Adaptive Compliant Wing-Design, Fabrication and Flight Test[C]//RTO Applied Vehicle Technology Panel(AVT)Symposium. Portugal:NATO Research and Technology Organization, 2009:1-19
    [5] Miller E J, Cruz J, Lung S, et al. Evaluation of the Hinge Moment and Normal Force Aerodynamic Loads From a Seamless Adaptive Compliant Trailing Edge Flap in Flight[C]//54th AIAA Aerospace Sciences Meeting. California:AIAA, 2016:AIAA 2016-0038
    [6] Herrera C Y, Spivey N D. Aeroelastic Response of the Adaptive Compliant Trailing Edge Transition Section[C]//AIAA SciTech 2016. San Diego CA:AIAA, 2016:AIAA 2016-0467
    [7] Rodriguez D L, Aftosmis M J, Nemec M, et al. Optimized Off-Design performance of Flexible Wings with Continuous Trailing-Edge Flaps[C]//56th AIAA Structures,Structural Dynamics, and Materials Conference. Florida:AIAA, 2015:AIAA2015-1409
    [8] Livne E, Precup N, Mor M. Design, Construction, and Tests of an Aeroelastic Wind Tunnel Model of a Variable Camber Continuous Trailing Edge Flap(VCCTEF)Concept Wing[C]//32nd AIAA Applied Aerodynamics Conference. Atlanta:AIAA, 2014:AIAA 2014-2442
    [9] W Lcken P C, Papadopoilos M. Smart Intelligent Aircraft Structures(SARISTU)[M]. Germany:Springer International Publishing, 2016:143-199
    [10] Yokozeki T, Sugiura A, Hirano Y. Development and Wind Tunnel Test of Variable Camber Morphing Wing[J]. Frontiers of Forestry in China, 2013, 2(3):329-334
    [11] Yokozeki T, Sugiura A, Hirano Y. Development and Wind Tunnel Test of Variable Camber Morphing Wing[C]//22nd AIAA/ASME/AHS Adaptive Structures Conference. Maryland:AIAA, 2014:AIAA 2014-1261
    [11] Takahashi H, Yokozeki T, Hirano Y. Development of Variable Camber Wing with Morphing Leading and Trailing Sections Using Corrugated Structures[J]. Journal of Intelligent Material Systems and Structures, 2016, 27(20):2827-2836
    [12]杨智春,解江.柔性后缘自适应机翼的概念设计[J].航空学报,2009, 30(6):1028-1034YANG Zhiehun, Xie Jiang. Concept Design of Adaptive Wing with Flexible Trailing Edge[J]. Acta Aeronautica et Astronautica Sinica, 2009, 30(6):1028-1034(in Chinese)
    [13] LIU Weidong, ZHU Hua. Structural Design and Control of Variable Camber Wing Driven by Ultrasonic Motors[J]. Transactions of Nanjing University of Aeronautics and Astronautics, 2015, 32(2):180-186
    [14]尹维龙,石庆华,田东奎.变体后缘的索网传动机构设计与分析[J].航空学报,2013, 34(8):1824-1831YIN Weilong, SHI QinghLa, TIAN Dongkui. Design and Analysis of Transmission Mechanism with Cable Networks for Moophing Trailing Edge[J]. Acta Aeronautica et Astronautica Sinica, 2013, 34(8):1824-1831(in Chinese)
    [15] WANG Chen, QIU Jinhao, NIE Rui. Development of a Morphing Skin Based on the Honeycomb Reinforced Elastomer[J]. Computers Materials&Continua, 2012, 32(1):61-72[16] NIE Rui, QIU Jinhao, JI Hongli. Aerodynamic Characteristic of the Active Compliant Trailing Edge Concept[C]//6th International Symposium on Physics of Fluids. Xining:International Journal of Modern Physics Conference Series, 2016:1660173
    [17] Stanewsky E, Delery J, Fulker J, et al. EUROSHOCK-Drag Reduction by Passive Shock Control[M]. Wiesbaden:Vieweg Teubner Verlag, 1997:7-19
    [18]聂瑞,裘进浩,季宏丽.自适应鼓包气动构型优化与结构概念设计[J].工程热物理学报,2017, 38(9):1896-1905NIE Rui, QIU Jinhao, JI Hongli. Aerodynamic Configuration Optimization and Structural Concept Designof Adaptive Bump[J]. Journal of Engineering Thermophysics, 2017, 38(9):1896-1905
    [19]皮格.非均匀有理B样条[M].北京:清华大学出版社,2010:86-91Les Piegl. The NURBS BOOK[M]. BeiJing:Tsinghua University Press, 2010:86-91
    [20] Cisse C, Zaki W, Ben Zineb T. A Review of Modeling Techniques for Advanced Effects in Shape Memory Alloy Behavior[J]. Smart Material Structures, 2016, 25(10):103001
    [21] Hartl D, Lagoudas D C. Aerospace Applications of Shape Memory Alloys[J]. Proceedings of the Institution of Mechanical Engineers-Part G, 2007, 221(4):535-552

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700