侧向喷流对超声速流动中支杆减阻降热特性影响的研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Research on Effects of Lateral Jet on Drag and Heat Reduction Characteristics of Spike in Supersonic Flows
  • 作者:朱亮 ; 陈雄 ; 周长省 ; 李映坤
  • 英文作者:ZHU Liang;CHEN Xiong;ZHOU Chang-sheng;LI Ying-kun;School of Mechanical Engineering,Nanjing University of Science and Technology;
  • 关键词:侧向喷流 ; 支杆 ; 热防护系统 ; 计算流体力学
  • 英文关键词:Lateral jet;;Spike;;Thermal protection system;;Computational fluid dynamics
  • 中文刊名:TJJS
  • 英文刊名:Journal of Propulsion Technology
  • 机构:南京理工大学机械工程学院;
  • 出版日期:2018-01-22 13:11
  • 出版单位:推进技术
  • 年:2018
  • 期:v.39;No.248
  • 基金:中央高校基本科研业务费专项资金(30915118805)
  • 语种:中文;
  • 页:TJJS201802010
  • 页数:9
  • CN:02
  • ISSN:11-1813/V
  • 分类号:91-99
摘要
为研究超声速流动中支杆侧向喷流的减阻降热特性,基于有限体积法求解非定常雷诺平均Navier-Stokes方程组,采用3阶MUSCL重构方法,AUSMPW+通量分裂格式,k-ωSST湍流模型并耦合求解固相热传导方程,编制了计算程序并利用相关实验验证了数值方法的可靠性。在此基础上,研究了侧向喷流总压和位置对超声速流动中支杆减阻降热特性的影响,得到了壁面St数、壁面压力及气动阻力的变化规律并考察了壁面热流随时间的动态变化过程。研究结果表明:当侧向喷流位置一定时,侧向喷流总压的增大将进一步提高减阻降热性能;当侧向喷流总压不变时,随着侧向喷流位置向钝体壁面靠近,减阻降热性能明显变差,尤其当侧向喷流总压较大时,阻力增长幅度接近50%。当侧向喷流位置离开支杆底部时,气动阻力对侧向喷流总压的变化较为敏感;随着时间的推进,壁面热流密度呈现下降趋势,在2s内壁面热流密度最大降幅达到49.5%,但热流密度沿壁面分布规律未发生变化。
        In order to investigate the characteristics of drag and heat reduction by a combinational lateral jet and spike in supersonic flows,based on the finite volume method the unsteady Reynolds-average NavierStokes(RANS)equations was solved by using high resolution upwind scheme AUSMPW+,3 order MUSCL reconstruction method and k-ω SST turbulence model with solving the solid state heat transfer equations. The code was developed and validated by related experimental case. Based on that,the effects of lateral jet total pressure and position were studied. Change laws of Stanton number,pressure of wall and the aerodynamic drag have been obtained and the dynamic characteristics of the wall heat flux with time is also investigated. Results show that when the position of lateral jet is fixed,the performance of heat and drag reduction all become better with the increasing of the lateral jet total pressure. The performance of heat and drag reduction become worse when the position of lateral jet gets closer to the blunt body surface as the lateral jet total pressure keeps constant,especially when the lateral jet total pressure is high,the drag increases by nearly 50%. The aerodynamic drag becomes more sensitive to the change of lateral jet total pressure when the lateral jet position is away from the bottom of the spike. The wall heat flux shows a decreasing trend with time and decreased by 49.5% in 2 seconds,but its distribution law along the wall keeps the same.
引文
[1]Ho S Y,Paull A.Coupled Thermal,Structural and Vibrational Analysis of a Hypersonic Engine for Flight Test[J].Aerospace Science&Technology,2006,10(5):420-426.
    [2]Huang W.A Survey of Drag and Heat Reduction in Supersonic Flows by a Counter Flowing Jet and Its Combinations[J].Journal of Zhejiang University-Science A,2015,16(7):551-561.
    [3]Ahmed M Y M,Qin N.Recent Advances in the Aerothermodynamics of Spiked Hypersonic Vehicles[J].Progress in Aerospace Sciences,2011,47(6):425-449.
    [4]耿云飞,阎超.联合激波针-逆向喷流方法的新概念研究[J].空气动力学学报,2010,28(4):436-440.
    [5]王振清,吕红庆,雷红帅.钝体前缘喷流热防护数值分析[J].宇航学报,2010,31(5):1266-1271.
    [6]Gerdroodbary M B,Imani M,Ganji D D.Heat Reduction Using Counter Flowing Jet for a Nose Cone with Aero Disk in Hypersonic Flow[J].Aerospace Science&Technology,2014,39:652-665.
    [7]Mehta R C.Numerical Heat Transfer Study over Spiked Blunt Bodies at Mach 6.8[J].Journal of Spacecraft&Rockets,2000,37(5):700-703.
    [8]Warren C H E.An Experimental Investigation of the Effect of Ejecting a Coolant Gas at the Nose of a Bluff Body[J].Journal of Fluid Mechanics,1960,8(3):400-417.
    [9]王兴,裴曦,陈志敏,等.超声速逆向喷流的减阻与降热[J].推进技术,2010,31(3):261-264.(WANG Xing,PEI Xi,CHEN Zhi-min,et al.Supersonic with Counter Flowing Jets on Drag and Heat Transfer Reduction[J].Journal of Propulsion Technology,2010,31(3):261-264.)
    [10]Finley P J.The Flow of a Jet from a Body Opposing a Supersonic Free Stream[J].Journal of Fluid Mechanics,1966,26(26):337-368.
    [11]Gerdroodbary M B,Bishehsari S,Hosseinalipour S M,et al.Transient Analysis of Counter Flowing Jet over Highly Blunt Cone in Hypersonic Flow[J].Acta Astronautica,2012,73(73):38-48.
    [12]Hayashi K,Aso S,Tani Y.Numerical Study of Thermal Protection System by Opposing Jet[R].AIAA 2005-188.
    [13]Hayashi K.Aso S.Effect of Pressure Ratio on Aerodynamic Heating Reduction due to Opposing Jet[R].AIAA 2003-4041.
    [14]马汉东,周伟江.超音速流中球头反向喷流流场的数值模拟[J].航空学报,1993,14(5):297-300.
    [15]周伟江,马汉东.反向喷流与主流干扰数值模拟[J].空气动力学学报,1994,12(3):295-300.
    [16]Gerdroodbary M B,Imani M,Ganji D D.Heat Reduction Using Counter Flowing Jet for a Nose Cone with Aero Disk in Hypersonic Flow[J].Aerospace Science&Technology,2014,39:652-665.
    [17]Huang W,Liu J,Xia Z X.Drag Reduction Mechanism Induced by a Combinational Opposing Jet and Spike Concept in Supersonic Flows[J].Acta Astronautica,2015,115:24-31.
    [18]Burbank P B,Stallings R L.Heat-Transfer and Pressure Measurements on a Flat Nose Cylinder at a Mach Number Range from 2.49 to 4.44[R].NASA TM X-221,1959.
    [19]陆海波,刘伟强.高超声速飞行器鼻锥迎风凹腔结构防热效能研究[J].宇航学报,2012,33(8):1013-1018.
    [20]陆海波,刘伟强.迎风凹腔与逆向喷流组合热防护系统冷却效果研究[J].物理学报,2012,61(6).
    [21]Huang W,Yan L,Liu J,et al.Drag and Heat Reduction Mechanism in the Combinational Opposing Jet and Acoustic Cavity Concept for Hypersonic Vehicles[J].Aerospace Science&Technology,2015,42:407-414.
    [22]Liu Y,Jiang Z.Concept of Non-Ablative Thermal Protection System for Hypersonic Vehicles[J].AIAA Journal,2012,50(3):584-590.
    [23]刘云峰,姜宗林.高超声速钝头体支杆侧向射流减阻新机理试验研究[C].郑州:第十三届中国力学学会北方七省、市、区力学学术交流会,2010.
    [24]刘君.超声速流动中燃烧现象的数值模拟方法及应用[M].长沙:国防科技大学出版社,2008.
    [25]Menter F R.Two-Equation Eddy-Viscosity Turbulence Models for Engineering Applications[J].AIAA Journal,1994,32(8):1598-1605.
    [26]陈雄,李映坤,刘锐,等.基于耦合传热的双脉冲发动机热防护层受热分析[J].推进技术,2016,37(1):83-89.(CHEN Xiong,LI Ying-kun,LIU Rui,et al.A Study of Thermal Protection Layer in Dual Pulse Motor Based on Conjugated Heat Transfer Method[J].Journal of Propulsion Technology,2016,37(1):83-89.)
    [27]Aso S,Hayashi K,Mizoguchi M.A Study on Aerodynamic Heating Reduction due to Opposing Jet in Hypersonic Flow[R].AIAA 2002-0646.
    [28]Dechaumphai P,Wieting A R,Thornton E A.FlowThermal-Structural Study of Aerodynamically Heated Leading Edges[J].Journal of Spacecraft and Rockets,1989,26(4):201-209.
    [29]Rui L,Xiong C,Chang-Sheng Z,et al.A Couple Approach for a Conjugate Heat Transfer Investigation of the Shape-Change Effects in a Composite Nozzle[J].Numerical Heat Transfer,Part A:Applications,2015,68(11):1280-1305.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700