当量比对超声速燃烧室等离子体点火流场及燃烧特性影响
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Effect of Equivalence Ratio on Flow Field and Combustion Characteristics of Plasma Ignition in Supersonic Combustor
  • 作者:窦志国 ; 刘毅 ; 张鹏 ; 杨波
  • 英文作者:DOU Zhiguo;LIU Yi;ZHANG Peng;YANG Bo;State Key Laboratory of Laser Propulsion & Application, Equipment Academy;63819 Army;
  • 关键词:等离子体点火 ; 超声速燃烧 ; 当量比 ; 燃烧效率 ; 总压损失
  • 英文关键词:plasma ignition;;supersonic combustor;;equivalence ratio;;combustion efficiency;;total pressure loss
  • 中文刊名:GDYJ
  • 英文刊名:High Voltage Engineering
  • 机构:装备学院激光推进及其应用国家重点实验室;63819部队;
  • 出版日期:2017-12-20 13:09
  • 出版单位:高电压技术
  • 年:2017
  • 期:v.43;No.301
  • 语种:中文;
  • 页:GDYJ201712022
  • 页数:7
  • CN:12
  • ISSN:42-1239/TM
  • 分类号:179-185
摘要
为了解等离子体射流点火情况下超声速燃烧室燃烧组织和燃烧性能,开展了超声速燃烧室等离子体射流点火数值模拟,调节乙烯燃料喷射压力从而改变混气当量比,分别计算了混气当量比对燃烧室燃烧效率、流场特征、壁面压力分布、燃烧产物组分分布以及总压损失的影响。研究结果表明:增大混气当量比导致燃烧效率下降;凹腔前壁面与等离子体射流之间属于燃烧反应最剧烈区域,温度最高,混气当量比从0.138增加到0.311时燃烧反应放热区增大,但凹腔内温度降低,混气当量比为0.485和0.624时燃烧反应放热区减小,凹腔下游燃烧反应主要发生在下壁面;增加混气当量比导致燃烧室上壁面压力跃升点前移且压力值变大;燃烧室总压损失主要包括燃料射流与主流形成的斜激波造成的总压损失和燃烧放热导致的总压损失,增加混气当量比气流经过燃料射流时导致的总压损失增大,但燃烧室总压损失主要由燃烧反应程度控制,燃烧反应越剧烈总压损失越大。
        In order to understand the combustion organization and performances in a supersonic combustor by plasma jet ignition, we numerically investigated the plasma jet ignition in supersonic combustor. Moreover, we calculated the effects of the gas mixture equivalence ratio on the combustion efficiency, flow field characteristics, distribution of wall pressure and combustion products,and total pressure loss by adjusting the fuel injection pressure to reach a certain equivalence ratio value. The results show that increasing the gas mixture equivalence ratio will reduce the combustion efficiency; The region between cavity front wall and plasma jet is the most fierce combustion reaction with the highest temperature, the heat release region of combustion reaction increases and cavity temperature decreases as the gas mixture equivalence ratio rises from 0.138 to 0.311, however,the heat release region of combustion reaction decreases and the combustion reaction occurs in downstream cavity when the gas mixture equivalence ratio is 0.485 and 0.624. The rising point of combustor top wall pressure moves towards upstream and the value of pressure increases as the gas mixture equivalence ratio increases; The total pressure loss in the combustor is mainly caused by the oblique shock wave by fuel jet, airstream, and heat release of combustion. Increasing the gas mixture equivalence ratio will enhance the total pressure loss caused by the oblique shock, but the total pressure loss in the combustor is mainly caused by the heat release of combustion. The more fierce combustion reaction is, the bigger the total pressure loss will be.
引文
[1]李钢,李华,杨陵元.俄罗斯等离子体点火和辅助燃烧研究进展[J].科技导报,2012,30(17):66-72.LI Gang,LI Hua,YANG Lingyuan.Review of plasma ignition and assisted combustion in Russia[J].Science&Technology Review,2012,30(17):66-72.
    [2]MASUYA G,KOMURO T.Ignition and combustion performance of scramjet combustors with fuel injection struts[J].Journal of Propulsion and Power,1995,11(2):301-307.
    [3]张弯洲,乐嘉陵,杨顺华,等马赫数4下氢气自燃辅助乙烯点火实验研究[J].推进技术,2013,34(12):1628-1635.ZHANG Wanzhou,LE Jialing,YANG shunhua,et al.Experimental research on ethylene ignition with hydrogen self-ignition assistant at Mach 4[J].Journal of Propulsion Technology,2013,34(12):1628-1635.
    [4]YANG V,LI J.Ignition transient in an ethylene fueled scramjet engine with air throttling Part I:non-reacting flow development and mixing[C]∥48th AIAA Aerospace Sciences Meeting.Orlando,Florida:AIAA,2010.
    [5]YANG V,LI J.Ignition transient in an ethylene fueled scramjet engine with air throttling Part II:ignition and flame development[C]∥48th AIAA Aerospace Sciences Meeting.Orlando,Florida:AIAA,2010.
    [6]龚诚,孙明波,张顺平,等.超声速燃烧室氢气强迫点火过程实验[J].推进技术,2012,33(4):547-551.GONG Cheng,SUN Mingbo,ZHANG Shunping,et al.Experimental study on the forced ignition of hydrogen in a supersonic combustor[J].Journal of Propulsion Technology,2012,33(4):547-551.
    [7]MURAKAMI K,NISHIKAWA A.Ignition characteristics of hydrocarbon fuels by plasma torch in supersonic flow[C]∥12th AIAA International Space Planes and Hypersonic Systems and Technologies Conference.Virginia,USA:AIAA,2003.
    [8]HYUNGROK D,MARK A.Plasma assisted cavity flame ignition in supersonic flows[J].Combustion and Flame,2010,157:1783-1794.
    [9]周思引,车学科,聂万胜.纳秒脉冲介质阻挡放电等离子体对超声速燃烧室中凹腔性能的影响[J].高电压技术,2014,40(10):3032-3037.ZHOU Siyin,CHE Xueke,NIE Wansheng.Influence of nanosecond pulse dielectric barrier discharge plasma on the cavity performance in scramjet combustor[J].High Voltage Engineering,2014,40(10):3032-3037.
    [10]JACOBSEN S,CARTER C.Toward plasma-assisted ignition in scramjets[C]∥41st AIAA Aerospace Sciences Meeting.Reno,Nevada:AIAA,2003.
    [11]KIYOTAKA S,RYOICHI K.Two-stage plasma torch ignition in supersonic airflows[C]∥37th AIAA/ASME/SAE/ASEE Joint Propulsion Conference&Exhibit.Salt Lake City,USA:AIAA,2001.
    [12]SERGEY O,MIKHAIL N.Energy efficiency of plasma-assisted combustion in ram/scramjet engines[C]∥36th AIAA Plasma Dynamics and Lasers Conference.Toronto,Canada:AIAA,2005.
    [13]MASUYA G,TAKITA K.Effects of airstream mach number on H2/N2plasma igniter[J].Journal of Propulsion and Power,2002,18(3):679-685.
    [14]MINATO R,NIIOKA T.Numerical analysis of supersonic combustion by a plasma torch[C]∥AIAA/CIRA 13th International Space Planes and Hypersonic Systems and Technologies.Rome,Italy:AIAA,2005.
    [15]韦宝禧,欧东,阎明磊,等.超燃燃烧室等离子体点火和火焰稳定性能[J].北京航空航天大学学报,2012,38(12):1572-1576.WEI Baoxi,OU Dong,YAN Minglei,et al.Ignition and flame holding ability of plasma torch igniter in a supersonic flow[J].Journal of Beijing University of Aeronautics and Astronautics,2012,38(12):1572-1576.
    [16]李飞,余西龙,顾洪斌,等.超声速气流中煤油射流的等离子体点火实验[J].航空动力学报,2012,27(4):824-831.LI Fei,YU Xilong,GU Hongbin,et al.Experiment on kerosene fueled scramjet ignition by using plasma torch[J].Journal of Aerospace Power,2012,27(4):824-831.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700