光纤偏振编码量子密钥分发系统荧光边信道攻击与防御
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Eavesdropping and countermeasures for backflash side channel in fiber polarization-coded quantum key distribution
  • 作者:陈艳辉 ; 王金东 ; 杜聪 ; 马瑞丽 ; 赵家钰 ; 秦晓娟 ; 魏正军 ; 张智明
  • 英文作者:Chen Yan-Hui;Wang Jin-Dong;Du Cong;Ma Rui-Li;Zhao Jia-Yu;Qin Xiao-Juan;Wei Zheng-Jun;Zhang Zhi-Ming;Guangdong Provincial Key Laboratory of Nanophotonic Functional Materials and Devices, Key Laboratory of Quantum Engineering and Quantum Materials, South China Normal University;Guangdong Polytechnic Institute;
  • 关键词:量子密钥分发 ; 偏振编码 ; 时分复用偏振补偿 ; 反向荧光
  • 英文关键词:quantum key distribution;;polarization-coded;;time division multiplexing polarization compensation;;backflash
  • 中文刊名:WLXB
  • 英文刊名:Acta Physica Sinica
  • 机构:华南师范大学, 广东省微纳光子功能材料与器件重点实验室 (信息光电子科技学院),广东省量子调控工程与材料重点实验室;广东理工职业学院工程技术系;
  • 出版日期:2019-07-08
  • 出版单位:物理学报
  • 年:2019
  • 期:v.68
  • 基金:国家自然科学基金(批准号:61771205);; 广东省自然科学基金(批准号:2015A030313388);; 广东省科技计划(批准号:2015B010128012,2017KZ010101)资助的课题~~
  • 语种:中文;
  • 页:WLXB201913003
  • 页数:7
  • CN:13
  • ISSN:11-1958/O4
  • 分类号:35-41
摘要
实际安全性是目前量子密钥分发系统中最大的挑战.在实际实现中,接收单元的单光子探测器在雪崩过程的二次光子发射(反向荧光)会导致信息泄露.目前,已有研究表明该反向荧光会泄露时间和偏振信息并且窃听行为不会在通信过程中产生额外误码率,在自由空间量子密钥分发系统中提出了利用反向荧光获取偏振信息的攻击方案,但是在光纤量子密钥分发系统中暂未见报道.本文提出了在光纤偏振编码量子密钥分发系统中利用反向荧光获取信息的窃听方案与减少信息泄露的解决方法,在时分复用偏振补偿的光纤偏振编码量子密钥分发系统的基础上对该方案中窃听者如何获取密钥信息进行了理论分析.实验上测量了光纤偏振编码量子密钥分发系统中反向荧光的概率为0.05,并对本文提出的窃听方案中的信息泄露进行量化,得出窃听者获取密钥信息的下限为2.5×10~(–4).
        Nowadays, the practical security of quantum key distribution(QKD) is the biggest challenge. In practical implementation, the security of a practical system strongly depends on its device implementation, and device defects will create security holes. The information leakage from a receiving unit due to secondary photon emission(backflash) is caused by a single-photon detector in the avalanche process. Now studies have shown that the backflash will leak the information about time and polarization and the eavesdropping behavior will not generate additional error rate in the communication process. An eavesdropping scheme obtaining time information by using backflash is proposed. Targeting this security hole for backflash leaking polarization information, an eavesdropping scheme for obtaining polarization information by using backflash is proposed in free-space QKD; however, it has not been reported in fiber QKD. In this study, the eavesdropping scheme and countermeasures for obtaining information by using backflash in fiber polarization-coded QKD is proposed.Since the polarization state of the fiber polarization-coded QKD system is easy to change, the scheme is proposed based on the time-division multiplexing polarization compensation fiber polarization-coded QKD system. In theory, the eavesdropper in this scheme obtaining the key information by using the backflash is theoretically deduced, and corrects the polarization change of the backflash by time-division multiplexing polarization compensation method, thus obtaining the accurate polarization information. The probability of backflash in the fiber polarization-coded QKD is measured to be 0.05, and the information leakage in the proposed eavesdropping scheme is quantified. The lower limit of the information obtained by the eavesdropper is 2.5 × 10~(–4). Due to the fact that the polarization compensation process increases invalid information in actual operation, the information obtained by the eavesdropper will be further reduced, thus obtaining the lower limit of information leakage. The results show that the backflash leaks a small amount of key information in a timemultiplexed polarization-compensated fiber polarization-coded QKD system. The wavelength characteristics of the backflash can be utilized to take corresponding defense methods. Backflash has a wide spectral range, and the count of backflash has a peak wavelength. So, tunable filters and isolators can be used to reduce backflash leakage, thereby reducing the information leakage.
引文
[1]Gisin N, Ribordy G, Tittel W, Zbinden H 2002 Rev. Mod.Phys. 74 145
    [2]Xu G, Chen X B, Dou Z, Yang Y X, Li Z 2015 Quantum Inf.Process 14 2959
    [3]Yue X L, WangJ D, Wei Z J, Guo B H, Liu S H 2012 Acta Phys. Sin. 61 184215(in Chinese)[岳孝林,王金东,魏正军,郭邦红,刘颂豪2012物理学报61 184215]
    [4]Yang L, Ma H X, Zhen C, Ding X L, Gao J C, Long G L2017 Acta Phys. Sin. 66 230303(in Chinese)[杨璐,马鸿洋,郑超,丁晓兰,高健存,龙桂鲁2017物理学报66 230303]
    [5]Deng G F, Li X H, Li T 2018 Acta Phys. Sin. 67 130301(in Chinese)[邓富国,李熙涵,李涛2018物理学报67 130301]
    [6]Bennett C H, Brassard G 1984 IEEE International Conference on Computers New York 198 4
    [7]Chen X B, Tang X, Xu G, Dou Z, Chen Y L, Yang Y X 2018Quantum Inf. Process 17 225
    [8]Chen X B, SunY R, Xu G, Jia H Y, Qu Z, Yang Y X 2017Quantum Inf. Process 16 244
    [9]Xu G, Xiao K, Li Z, Niu X X, Ryan M 2019 Comput. Mater.Con. 58 809
    [10]Xu G, Chen X B, Li J, Wang C, Yang Y X, Li Z 2015Quantum Inf. Process 14 4297
    [11]Chen X B, Wang Y L, Xu G, Yang Y X 2019 IEEE Access 713634
    [12]Liu H W, Qu W X, Dou T Q, Wang J P, Zhang Y, Ma H Q2018 Chin. Phys. B 27 212
    [13]Zhang H, Mao Y, Hang D, Guo Y, Wu X D, Zhang L 2018Chin. Phys. B 27 90307
    [14] Lo H 1999 Science 283 2050
    [15] Norbert L 2000 Phys. Rev. A 61 052304
    [16] Shor P W, Preskill J 2000 Appl. Phys. Lett. 85 441
    [17] Renner R 2005 Phys. Rev. A 72 012332
    [18]Wu C F, Du Y N, Wang J D, Wei Z J, Qin X J, Zhao F,Zhang Z M 2016 Acta Phys. Sin. 65 100302(in Chinese)[吴承峰,杜亚男,王金东,魏正军,秦晓娟,赵峰,张智明2016物理学报65 100302]
    [19]Wang J D, Qin X J, Jiang Y Z, Wang X J, Chen L W, Zhao F, Wei Z J, Zhang Z M 2016 Opt. Express 24 8302
    [20]Brassard G, Lütkenhaus N, Mor T, Sanders B C 2000 Appl.Phys. Lett. 85 1330
    [21]Lydersen L, Wiechers C, Wittmann C, Elser D, Skaar J,Makarov V 2010 Nat. Photon. 4 686
    [22] Wang J D, Wang H, Qin X J, Wei Z J, Zhang Z M 2016 Eur.Phys. J. D 70 1
    [23] Vadim M, Hjelme D R 2005 J. Mod. Opt. 52 691
    [24]Qi B, Fung C H F, Lo H K, Ma X 2007 Quantum Inf.Comput. 7 73
    [25] Hadfield R H 2009 Nat. Photon. 3 696
    [26] Newman R 1955 Phys. Rev. 100 700
    [27] Chynoweth A G, Mckay K G 1956 Phys. Rev. 102 369
    [28] Childs P A, Eccleston W 1984 J. Appl. Phys. 55 4304
    [29] Waldschmidt M, Wittig S 1968 Nucl. Instrum. Meth. 64 189
    [30]Gautam D K, Khokle W S, Garg K B 1988 Solid State Electron 31 219
    [31]Lacaita A L, Zappa F, Bigliardi S, Manfredi M 1993 IEEE Trans. Electron Dev. 40 577
    [32]Lacaita A, Cova S, Spinelli A, Zappa F 1993 Appl. Phys.Lett. 62 606
    [33] Villa S, Lacaita A L, Pacelli A 1995 Phys. Rev. B 52 10993
    [34]Akil N, Kerns S E, Kerns D V, Charles J P 1998 Appl. Phys.Lett. 73 871
    [35] Kurtsiefer C, Zarda P, Mayer S, Weinfurter H 2001 J. Mod.Opt. 48 2039
    [36]Acerbi F, Tosi A, Zappa F 2013 IEEE Photon. Tech. L. 251778
    [37]Meda A, Degiovanni I P, Tosi A, Yuan Z, Brida G, Genovese M 2017 Light-Sci. Appl. 6 e16261
    [38]Marini L, Camphausen R, Xiong C, Eggleton B J, Palomba S2016 Conference on Optical Fibre Technology Australian OSA, September, 2016pAW5C-4
    [39]Shi Y, Lim J Z J, Poh H S, Tan P K, Tan P A, Ling A,Kurtsiefer C 2017 Opt. Express 25 30388
    [40]Pinheiro P V P, Chaiwongkhot P, Sajeed S, Horn R T,Bourgoin J P, Jennewein T, Makarov V 2018 Opt. Express 2621020
    [41]Chen J, Wu G, Li Y, Wu E, Zeng H 2007 Opt. Express 1517928
    [42] Temporao G P 2009 New J. Phys. 11 045015
    [43] Chen J, Wu G, Xu L, Gu X, Wu E, Zeng H 2009 New J.Phys. 11 065004

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700