超重环境下数值波浪水槽消波方法研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Damping absorption of numerical wave tanks in hypergravity field
  • 作者:王巧莎 ; 李明海 ; 张凌云
  • 英文作者:WANG Qiao-sha;LI Ming-hai;ZHANG Ling-yun;China Academy of Engineering Physics Institute of System Engineering;
  • 关键词:超重环境 ; 阻尼消波 ; 多孔介质 ; 数值波浪水槽 ; 摇板造波法
  • 英文关键词:hypergravity field;;damping absorption;;porous media;;numerical wave tank;;flap-type wavemaker
  • 中文刊名:SDLJ
  • 英文刊名:Chinese Journal of Hydrodynamics
  • 机构:中国工程物理研究院总体工程研究所;
  • 出版日期:2017-11-30
  • 出版单位:水动力学研究与进展(A辑)
  • 年:2017
  • 期:v.32
  • 语种:中文;
  • 页:SDLJ201706004
  • 页数:8
  • CN:06
  • ISSN:31-1399/TK
  • 分类号:34-41
摘要
该文基于雷诺平均N-S方程,结合RNG k-?方程建立黏性数值波浪水槽,对不同体力加速度条件下规则波的消波问题进行研究。文中提出了三种描述消波区内部阻尼变化的阻尼函数,并对其适用性进行研究。研究结果表明,阻尼函数1线性阻尼增长模式在小波陡情况下优势明显,然而随着波陡增加其前段阻尼增速过快带来的影响不可忽略;阻尼函数2、3非线性阻尼增长模式则相反。采用同种阻尼函数时不同体力加速度条件下反射系数基本相同,阻尼系数可取为N×103。考虑波浪水槽尺寸,超重环境下三到四级海况的水波实验宜采用1/25至1/50的缩尺比完成;而极端海况的模拟则需采用更小的缩尺比完成。
        In this paper, the Reynolds averaged N-S equations and RNG k-? equations are solved for establishing the viscous numerical wave tanks. The problem of damping absorption in Ng force field is studied in the viscous numerical wave tanks. Three damping functions for describing the variation of the damping in damping zone are presented and studied. The results show that for the case with small wave steepness, the damping function 1 with the linear increasing of damping has a clear advantage. However, with the increase of wave steepness the influence of too fast growth rate of damping, at the front of the damping zone, can not be neglected. And the damping function 2 and 3 with the nonlinear increasing of damping have the opposite quality. The damping coefficient can be set to N×103 in Ng force field when the same damping function the reflection coefficients are basically similar in different accelerations of body force. The scale considered in hypergravity field is from1/25 to 1/50 at the sea state level about 3~4 for the limitation of the dimensions of the wave tank. And the smaller scale should be considered for the simulation of the extreme sea state.
引文
[1]SEKIGUCHI H,PHILLIPS R.Generation of water waves in a drum centrifuge[C].Proceedings of international conference CENTRIFUGE 91,Colorado,1991.
    [2]SEKIGUCHI H,KITA K,SASSA S,et al.Generation of progressive fluid waves in a geo-centrifuge[J].Geotechnical Testing Journal,1998,21(2):95-101.
    [3]SASSA S,SEKIGUCHI H.Wave-induced liquefaction of beds of sand in a centrifuge[J].Géotechnique,1999,49(5):621-638.
    [4]SASSA S,SEKIGUCHI H,MIYAMOTO J.Analysis of progressive liquefaction as moving-boundary problem[J].Géotechnique,2001,51(10):847-857.
    [5]COULTER S E,PHILLIPS R.Simulating submarine slope instability initiation using centrifuge model testing[C].Proceeding of the 1st international symposium on Submarine Mass Movement and their Consequences,2003.
    [6]COULTER S E.Seismic initiation of submarine slope failures using physical modeling in a geotechnical centrifuge[D].Memorial University of Newfoundland,2008.
    [7]BOYLAND N,GAUDIN C,WHITE D J,et al.Modelling of submarine slides in the geotechnical centrifuge[C].Proceedings of the 7th international conference Physical Modelling in Geotechnics,Zurich,Swiss,2010.
    [8]GUE C S.Submarine landslide flows simulation through centrifuge modelling[D].Dissertation of the University of Cambridge,2012.
    [9]URSELL F,DEAN R G,YU Y S.Forced small-amplitude water waves:A comparison of theory and experiment[J].Journal of Fluid Mechanics.1960,7(1):33-52.
    [10]NALLAYARASU S,FATT C H,SHANKAR N J.Estimation of incident and reflection waves in regular wave experiments[J].Ocean Engineering,1995,22(1):77-86.
    [11]DONG G,MA X Z,PERLIN M,et al.Experimental study of long wave generation on sloping bottoms[J].Coastal Engineering,2009,56(1):82-89.
    [12]SPINNEKEN J,SWAN C.Second-order wave maker theory using force-feedback control.Part I:A new theory for regular wave generation[J].Ocean Engineering,2009,36(8):539-548.
    [13]邹志利,邱大洪,王永学.VOF方法模拟波浪槽中二维非线性波[J].水动力学研究与进展,A辑,1996,11(1):93-103.ZOU Z L,QIU D H,WANG Y X.Numerical Simulation of nonlinear wave generation in wave flume by VOF technique[J].Journal of Hydrodynamics,Ser.A,1996,11(1):93-103.
    [14]周勤俊,王本龙,兰雅梅,等.海堤越浪的数值模拟[J].力学季刊,2005,26(4):629-633.ZHOU Q J,WANG B L,LAN Y M,et al.Numerical simulation of wave overtopping over seawalls[J].Chinese Quarterly of Mechanics,2005,26(4):629-633.
    [15]李凌,林兆伟,龙云祥,等.基于动量源方法的黏性数值波浪水槽[J].水动力学研究与进展,A辑,2007,22(1):76-82.LI L,LIN Z W,YOU Y X,et al.The numerical wave flume of the viscous fluid based on the momentum source method[J].Journal of Hydrodynamics,Ser.A,2007,22(1):76-82.
    [16]董志,詹杰民.基于VOF方法的数值波浪水槽以及造波、消波方法研究[J].水动力学研究与进展,A辑,2009,24(1):15-21.DONG Z,ZHAN J M.Comparison of existing methods for wave generation and absorbing in VOF-based numerical tank[J].Journal of Hydrodynamics,Ser.A,2009,24(1):15-21.
    [17]LIN P,LIU P L F.Discussion of“Vertical variation of the flow across the surf zone”[J].Coastal Engineering.2004,50(3):161-164.
    [18]HAFSIA Z,HADJ M B,LAMLOUMI H,et al.Internal inlet for wave generation and absorption treatment[J].Coastal Engineering,2009,56(9):951-959.
    [19]HUANG C J,ZHANG E C,LEE J F.Numerical simulation of nonlinear viscous wavefields generated by piston-type wavemaker[J].Journal of Engineering Mechanics,1998,124(10):1110-1120.
    [20]ANBARSOOZ M,PASSANDIDEH-FARD M,MOGHIMAN M.Fully nonlinear viscous wave generation in numerical wave tanks[J].Ocean Engineering,2013,59(1):73-85.
    [21]HIRT C W,NICHOLS B D.Volume of fluid(VOF)method for the dynamics of free boundaries[J].Journal of Computational Physics,1981,39(1):201-225.
    [22]俞聿修,柳淑学.随机波浪及其工程应用[M].大连,中国:大连理工出版社,2011.YU Y X,LIU S X.Random wave and its applications to engineering[M].Dalian,China:Dalian University of Technology Press,2011.
    [23]MOLIN B.海洋工程水动力学[M].刘水庚,译.北京,中国:国防工业出版社,2012.MOLIN B.Hydrodynamique des structures offshore[M].Liu S G,translation.Beijing,China:National Defense Industry Press,2012.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700