高速变形材料塑性及JC和MSV断裂准则的表达能力
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Material Plasticity under Super-High Deformation Rate and Performance of JC and MSV Fracture Criteria
  • 作者:陶恒 ; 苏国胜
  • 英文作者:Tao Heng;Su Guosheng;School of Mechanical and Automotive Engineering,Qilu University of Technology;
  • 关键词:塑性 ; 断裂准则 ; JC ; MSV ; 超高应变率
  • 英文关键词:plasticity;;fracture criteria;;JC;;MSV;;super-high strain rate
  • 中文刊名:GJJS
  • 英文刊名:Tool Engineering
  • 机构:齐鲁工业大学;
  • 出版日期:2017-08-20
  • 出版单位:工具技术
  • 年:2017
  • 期:v.51;No.528
  • 基金:国家自然科学基金(51675289);; 山东省自然科学基金(ZR2013EEM022)
  • 语种:中文;
  • 页:GJJS201708005
  • 页数:6
  • CN:08
  • ISSN:51-1271/TH
  • 分类号:33-38
摘要
研究了超高变形速率下材料的塑性(延性)演化规律和断裂行为。通过45钢、Ti-6Al-4V、Al2024-T3和Al2024-T351四种材料高速变形数据,考察了JC断裂准则和MSV断裂准则对于高应变率下材料失效行为的表达能力。研究发现,JC断裂准则中材料的失效应变随着应变率的增加单调增大,JC断裂准则能够描述中低应变率范围内(0-10~3/s)材料的断裂情况;对于应变率更高(≥10~4/s)情况下材料的断裂行为,JC断裂准则不能描述。材料的MSV在约10~4/s时突然增大,MSV断裂准则能够描述超高应变率下材料的断裂趋势。
        To explore material deformation and fracture mechanism under super-high strain rate,discussion was conducted to investigate material plasticity under super-high deformation rate. The ability of JC fracture criterion and MSV fracture criterion to express material fracture behavior under high and super-high strain rate by taking 45 # steel,Ti-6Al-4V,Al2024-T3 and Al2024-T351 as reference materials was verified. It was found that material failure strain increased with the increase of strain rate,JC fracture criterion can describe material fracture behavior between strain rate 0 to 10~3/s,but can not for much higher strain rate( ≥10~4/s) condition. MSV increases abruptly around strain rate 10~4/s,MSV fracture criterion can express qualitatively material fracture tendency under super-high strain rate.
引文
[1]Klahn D,Mukherjee A K,Dorn J E.Strain-Rate Effects[C].2nd International Conference on The Strength of Metals and Alloys,Conference Proceeding 3,ASM(1970):949-1009.
    [2]A S Kao,H A Kuhn.Physical modeling of ductile fracture during metalforming process[J].Journal of Engineering Materials and Technology,1990(112):302-308.
    [3]Parker E R.Brittle Behavior of Engineering Structures,London,John Wiley&Sons,Inc,1957,39.
    [4]F J Zerilli,R W Armstrong.Dislocation-mechanics-based constitutive relations for material dynamics calculations[J].Appl Phys 61,1987:1816-1825.
    [5]G I Kanel,S V Razorenov,G V Garkushin,et al.Deformation resistance and fracture of iron over a wide strain rate range[J].Physics of The Solid State,2014,56(8):1518-1522.
    [6]J R Klepaczko.Plastic shearing at high and very high strain rates[J].Journal Dephysique IV Colloque C8,supplement au Journal de Physique HI,1994,4:35-40.
    [7]L Zhou,J Shimizu,A Muroya,et al.Material removal mechanism beyond plastic wave propagation rate[J].Precision Engineering,2003,27:109-116.
    [8]苏国胜,刘战强.基于剪切带断裂特征的锯齿形切屑形成机理演化的研究[J].工具技术,2010,44(10):17-19.
    [9]J R Klepaczko.Review on critical impact velocities in tension and shear[J].International Journal of Impact Engineering,2005(32):188-209.
    [10]R J Clifton.High strain rate behavior of metals[J].Appl Mech Rev,1990(43):9-22.
    [11]周惠久,黄明志.金属材料强度学[M].北京:科学出版社,1983.
    [12]胡昌明,贺红亮,胡时胜.45号钢的动态力学性能研究[J].爆炸与冲击,2003,23(2):188-192.
    [13]F A Mc Clintock,S M Kaplan,C A Berg.Ductile fracture by hole growth in shear bands[J].International Journal of Fracture Mechanics,1966(2):614-627.
    [14]Brünig M,Albrecht D,Gerke S.Modeling of ductile damage and fracture behavior based on different micro-mechanisms[J].Int J Damage Mech,2011,20(20):558-577.
    [15]M Alves,N Jones.Influence of hydrostatic stress on failure of axisymmetric notched specimens[J].Journal of the Mechanics and Physics of Solids,1999(47):643-667.
    [16]G R Johnson,W H Cook.Fracture characteristics of three metals subjected to various strain,strain rates,temperatures and pressures[J].Engineering Fracture Mechanics,1985,21(1):31-48.
    [17]A S Khan,H W Liu.A new approach for ductile fracture prediction on Al2024-T351 alloy[J].International Journal of Plasticity,2012(35):1-12.
    [18]L R Donald.Failure modeling of Titanium 6Al-4V and Aluminum 2024-T3 with the Johnson-Cook material model.FAA report DOT/FAA/AR-00/25,September 2000.
    [19]G R Johnson,T J Holmquist.Test data and computational strength and fracture model constants for 23 materials subjected to large strains,high strain rates,and high temperatures[M].Los Alamos National Laboratory,LA-11463-MS,1989.
    [20]L Donald.Experimental investigation of material models for Ti-6Al-4V and 2024-T3.FAA Report DOT/FAA/AR-00/25,September 2000.
    [21]Clausen A H,Borvik T.Flow and fracture characteristics of aluminium alloy AA5083-H116 as function of strain rate,temperature and triaxiality[J].Materials Science and Engineering A 364,2004:260-272.
    [22]陈钢,陈忠富,徐伟芳,等.45钢的JC损伤失效参量研究[J].爆炸与冲击,2007,27(2):131-135.
    [23]费思聪,孙秦.铝合金的J-C失效参数标定与仿真分析[J].计算机仿真,2013,30(9):46-50.
    [24]高光发,李永池,赵凯,等.材料Johnson-Cook破坏准则参数对侵彻行为的影响及校正[J].兵器材料科学与工程,2016,39(3):17-25.
    [25]A S Khan,H W Liu.Strain rate and temperature dependent fracture criteria for isotropic and anisotropic metals[J].International Journal of Plasticity,2012(37):1-15.
    [26]J W Hancock,A C Mackenzie.On the mechanism of ductile failure in high-strength steels subjected to multi-axial stress-states[J].Mech Phys Sol,1976:147-175.
    [27]B Wang,Z Q Liu.Evaluation on fracture locus of serrated chip generation with stress triaxiality in high speed machining of Ti6Al4V[J].Materials and Design,2016(98):68-78.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700