激光冲击钛合金薄壁件动态响应及残余拉应力形成机制
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Dynamic Response and Residual Tensile Stress Formation Mechanism of Titanium Alloy Thin-Walled Piece in Laser Shock Peening
  • 作者:田乐 ; 聂祥樊 ; 罗思海 ; 王育虔 ; 何卫锋 ; 李一鸣 ; 李翔
  • 英文作者:TIAN Le;NIE Xiangfan;LUO Sihai;WANG Yuqian;HE Weifeng;LI Yiming;LI Xiang;Key Laboratory of Science and Technology on Plasma Dynamics,Air Force Engineering University;Aeronautics Engineering College,Air Force Engineering University;
  • 关键词:激光冲击强化 ; 残余拉应力 ; 薄壁件 ; 冲击波
  • 英文关键词:laser shock peening;;residual tensile stress;;thin-walled piece;;shock wave
  • 中文刊名:KJGC
  • 英文刊名:Journal of Air Force Engineering University(Natural Science Edition)
  • 机构:空军工程大学等离子体动力学重点实验室;空军工程大学航空工程学院;
  • 出版日期:2018-06-25
  • 出版单位:空军工程大学学报(自然科学版)
  • 年:2018
  • 期:v.19;No.110
  • 基金:国家重点研发计划(2016YFB1102600)
  • 语种:中文;
  • 页:KJGC201803002
  • 页数:6
  • CN:03
  • ISSN:61-1338/N
  • 分类号:11-16
摘要
为探究激光冲击薄壁件时残余拉应力的形成机制,利用ABAQUS软件对0.5mm钛合金薄壁件激光冲击条件下的冲击波作用规律和材料动态响应规律展开研究。结果表明,冲击波在薄壁件内反射时交替形成高数值拉伸波和压缩波,在压缩波和拉伸波的耦合作用下应力分布混乱并呈现"多峰"特点,形成了峰值为426 MPa、厚度达0.125mm的拉应力层,且最大残余拉应力位于表面处。基于冲击波反射规律揭示了薄壁件中残余拉应力的形成机制,并通过增加试件厚度以降低反射拉伸波强度发现5mm厚试件内最大残余拉应力仅为70 MPa,且表面处的拉应力转化为了压应力,从而提出了通过导波等方式控制应力波反射强度的薄壁件残余应力调控方法。
        To investigate the residual tensile stress formation mechanism of thin-walled piece in laser shock peening,the shock wave propagation law and the dynamic respond law of 0.5 mm titanium alloy thinwalled piece are analyzed by ABAQUS software.The results show that when in reflecting in the thinwalled piece,the shock wave forms high-intensity tensile wave and compression wave in turn.The stress distribution in depth is disordered under the action of tensile wave and compression wave,and is characterized by multiple peaks.The tensile stress field is located within 0.125 mm beneath the surface and the residual tensile stress up to 426 MPa appears on the surface.The formation mechanism of residual tensile stress is revealed based on the shock wave reflection law.The maximum residual tensile stress is only 70 MPa in the 5 mm thick plate and tensile stress at the surface translates into compressive stress by reducing the intensity of reflected tensile wave.Therefore,based on the principle of controlling the reflection wave pressure,a method of stress field regulation by exporting shock wave is proposed.
引文
[1]LI P Y,HUANG S K,XU H F,et al.Numerical Simulation and Experiments of Titanium Alloy Engine Blades Based on Laser Shock Processing[J].Aerospace Science and Technology,2015,40:164-170.
    [2]薛丁元,何卫锋,焦阳,等.微激光冲击提高TC17钛合金高周疲劳性能研究[J].激光与红外,2016,46(10):1189-1194.XUE D Y,HE W F,JIAO Y,et al.Study on High Cycle Fatigue Performance of TC17 Titanium Alloy Improved by Micro-Scale Laser Shock Processing[J].Laser&Infrared,2016,46(10):1189-1194.(in Chinese)
    [3]MA Z,LI Y H,WANG C.Investigation of Laser Shock Peening on Aero-Engine Compressor Rotor Blade[J].Key Engineering Materials,2008,373-374:404-407.
    [4]李应红.激光冲击强化理论与技术[M].北京:科学出版社,2013.LI Y H.The Theory and Technology of Laser Shock Peening[M].Beijing:Science Press,2013.(in Chinese)
    [5]GE M Z,XIANG J Y.Effect of Laser Shock Peening on Microstructure and Fatigue Crack Growth Rate of AZ31B Magnesium Alloy[J].Journal of Alloys and Compounds,2016,680:544-552.
    [6]陆莹,赵吉宾,乔红超.TiAl合金激光冲击强化工艺探索及强化机制研究[J].中国激光,2014,41(10):125-130.LU Y,ZHAO J B,QIAO H C.Investigation of Technical and Strengthening Mechanism Research of TiAl Alloy by Laser Shock Peening[J].Chinese Journal of Lasers,2014,41(10):125-130.(in Chinese)
    [7]周建忠,王呈栋,黄舒,等.6061-T6铝合金紧凑拉伸试样激光喷丸强化后的疲劳裂纹扩展性能研究[J].中国激光,2011,38(7):0703009.ZHOU J Z,WANG C D,HUANG S,et al.Study on Fatigue Crack Growth Performance of 6061-T6Aluminum Alloy after Laser Shot Peening[J].Chinese Journal of Lasers,2011,38(7):0703009.(in Chinese)
    [8]SAGISAKA Y,KAMIYA M,MATSUDA M,et al.Thin-Sheet-Metal Bending by Laser Peen Forming with Femtosecond Laser[J].Journal of Materials Processing Technology,2010,210:2304-2309.
    [9]MORALES M,PORRO J A,GARCíA-BALLESTEROS J J,et al.Effect of Plasma Confinement on Laser Shock Microforming of Thin Metal Sheets[J].Applied Surface Science,2011,257(12):5408-5412.
    [10]CELLARD C,RETRAINTA D,FRANCOISA M,et al.Laser Shock Peening of Ti-17Titanium Alloy:Influence of Process Parameters[J].Materials Science and Engineering A,2012,532:362-372.
    [11]DORMAN M,TOPARLI M B,SMYTH N,et al.Effect of Laser Shock Peening on Residual Stress and Fatigue Life of Clad 2024 Aluminium Sheet Containing Scribe Defects[J].Materials Science and Engineering A.2012,548:142-151.
    [12]印成,冯爱新,曹宇鹏,等.激光冲击波加载AZ31B镁合金薄板动静态响应实验研究[J].应用激光,2014,34(6):562-566.YIN C,FENG A X,CAO Y P,et al.Experimental Research of Dynamic and Static Respond of AZ31B Magnesium Alloy Sheet by Laser Shock Wave[J].Applied Laser,2014,34(6):562-566.(in Chinese)
    [13]罗开玉,陈起,吕刺,等.双面激光同时冲击AM50镁合金板料的厚度分析[J].中国激光,2014,41(1):65-70.LUO K Y,CHEN Q,LV C,et al.Thickness Analysis of Two-sided Simultaneous Laser Shock Processing on AM50 Mg Alloy[J].Chinese Journal of Lasers,2014,41(1):65-70.(in Chinese)
    [14]OCAA J L,CORREA C,GARCíA-BELTRN A,et al.Laser Shock Processing of Thin Al2024-T351Plates for Induction of Through-Thickness Compressive Residual Stresses Fields[J].Journal of Materials Processing Technology.2015,223:8-15.
    [15]LING X,PENG W W,MA G.Influence of Laser Peening Parameters on Residual Stress Field of 304Stainless Steel[J].Journal of Pressure Vessel Technology,2008,130(2):021201-021208.
    [16]彭薇薇,凌祥.激光冲击残余应力场的有限元分析[J].航空材料学报,2006,26(6):30-37.PENG W W,LING X.Residual Stress Field Induced by Laser Peening:A Finite Element Analysis[J].Journal of Aeronautical Materials,2006,26(6):30-37.(in Chinese)
    [17]LUO K Y,LU J Z,WANG Q W,et al.Residual Stress Distribution of Ti-6Al-4V Alloy under Different ns-LSP Processing Parameters[J].Applied Surface Science,2013,285:607-615.
    [18]JOHNSON G R,COOK W H.A Constitutive Model and Data for Metals Subjected to Large Strains,High Strain Rates and High Temperatures[C].Proceedings of the 7th International Symposium on Ballistics Hague the Netherlands Publishers,1983.
    [19]彭鸿博,张宏建.金属材料本构模型的研究进展[J].机械工程材料,2012,36(3):5-10.PENG H B,ZHANG H J.Research Development of The Constitutive Models of Metal Materials[J].Materials for Mechanical Engineering,2012,36(3):5-10.(in Chinese)
    [20]李玉杰,陈东林,熊竻琦,等.TC4钛合金板材激光冲击强化动态应力波传播特性的数值模拟与实验[J].塑性工程学报,2011,18(4):79-84.LI Y J,CHEN D L,XIONG L Q,et al.Numerical Simulation and Experimental Investigation on The Transient Transmission of Stress Wave of TC4Material During Laser Shock Processing[J].Journal of Plasticity Engineering,2011,18(4):79-84.(in Chinese)
    [21]谭华.实验冲击波物理导引[M].北京:国防工业出版社,2007.TAN H.Introduction to Experimental Shock-Wave Physics[M].Beijing:National Defense Industry Press,2007.(in Chinese)
    [22]聂祥樊.钛合金薄叶片激光冲击超高应变率动态响应与强化机理研究[D].西安:空军工程大学,2015.NIE X F.Dynamic Response And Strengthening Mechanism of Titanium Alloy Thin Blade under Laser Shock Loading at Ultra-High Strain Rates[D].Xi’an:Air Force Engineering University,2015.(in Chinese)
    [23]胡永祥.激光冲击处理工艺过程数值建模与冲击效应研究[D].上海:上海交通大学,2008.HU Y X.Research on The Numerical Simulation and Impact Effects of Laser Shock Processing[D].Shanghai:Shanghai Jiaotong University,2008.(in Chinese)
    [24]廖培育,王声波,盛晶晶,等.实验研究脉冲强激光在钛合金靶中诱导的冲击波[J].应用激光,2007,27(2):110-112.LIAO P Y,WANG S B,SHENG J J,et al.Experimental Study of High-power Pulsed Laser Induced Shock Waves in Ti Alloy Target[J].Applied Laser,2007,27(2):110-112.(in Chinese)
    [25]郭伟国,李玉龙,索涛.应力波基础简明教程[M].西安:西北工业大学出版社,2007.GUO W G,LI Y L,SUO T.Stress Wave Concise Guide[M].Xi’an:Northwestern Polytechnical University Press,2007.(in Chinese)
    [26]王礼力.应力波基础[M].北京:国防工业出版社,2005.WANG L L.Foundation of Stress Wave[M].Beijing:National Defense Industry Press,2005.(in Chinese)
    [27]陈明祥.弹塑性力学[M].北京:科学出版社,2007.CHEN M X.Elasticity and Plasticity[M].Beijing:Science Press,2007.(in Chinese)
    [28]ZHAO J F,ZHOU J Z,HUANG S,et al.Numerical Simulation on Fatigue Crack Growth of Metal Sheet Induced by Laser Shot Peening[J].International Journal of Modern Physics B,2009,23:1646-1651.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700