用户名: 密码: 验证码:
两栖爬行动物的高海拔适应性演化:现状与展望
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:High-altitude adaptive evolution in amphibians and reptiles:Status and prospect
  • 作者:高伟 ; 付婷婷 ; 车静
  • 英文作者:GAO Wei;FU TingTing;CHE Jing;State Key Laboratory of Genetic Resources and Evolution,Kunming Institute of Zoology,Chinese Academy of Sciences;Kunming College of Life Science,University of Chinese Academy of Sciences;Center for Excellence in Animal Evolution and Genetics,Chinese Academy of Sciences;
  • 关键词:两栖动物 ; 爬行动物 ; 高海拔适应 ; 变温动物 ; 表型组 ; 基因组
  • 英文关键词:amphibian;;reptile;;high-altitude adaptation;;poikilotherm;;phenomics;;genomics
  • 中文刊名:JCXK
  • 英文刊名:Scientia Sinica(Vitae)
  • 机构:中国科学院昆明动物研究所遗传资源与进化国家重点实验室;中国科学院大学昆明生命科学学院;中国科学院动物进化与遗传前沿交叉卓越创新中心;
  • 出版日期:2019-04-17 17:00
  • 出版单位:中国科学:生命科学
  • 年:2019
  • 期:v.49
  • 基金:中国科学院战略性先导科技专项(批准号:XDB13020200);; 国家自然科学基金(批准号:91431105)资助
  • 语种:中文;
  • 页:JCXK201904007
  • 页数:16
  • CN:04
  • ISSN:11-5840/Q
  • 分类号:59-74
摘要
高海拔极端环境具有低温、低氧、强紫外等特点,加之复杂的地质历史、独特的地形地貌等环境因素,为开展生物适应性演化研究提供了天然实验室.作为变温动物(poikilotherm)的代表类群,两栖爬行动物是高海拔生物区系中重要的组成部分,已知物种最高海拔分布可达5300 m.前期研究显示两栖爬行动物代表物种在生理、形态及生活史等方面进化出一系列表型特征,以适应高海拔环境.近年来,随着新一代测序技术的发展,从基因组水平探讨高海拔适应的分子机制成为可能,并取得了突破性进展,尤其是青藏高原地区代表性两栖爬行动物基因组的解析,标志着两栖爬行动物适应性演化研究进入了一个新的时代.本文总结分析了目前表型研究已取得的成果,重点分析和讨论了分子机制的研究进展.展望未来,以下几个方面研究将是发展的重点:表型组学(phenomics)的建立;表型组和基因组(genomics)的关联分析;遗传变异的功能分析及实验体系的建立.高海拔适应性研究已成为两栖爬行动物适应性演化研究领域的开拓性工作和范例.
        The study of high-altitude adaptation is pioneering and exemplary work in the field of adaptive evolution in amphibians and reptiles.High-altitude areas often have extreme environmental characteristics,such as low temperature,hypoxia,and strong ultraviolet(UV)radiation,in addition to a complex geological history and unique topography.Therefore,these areas provide a natural laboratory for examining the adaptive evolution of organisms.As representative groups of poikilotherms,amphibians and reptiles are important members of high-altitude fauna;some of them are found as high as 5300 m above sea level.Previous studies have reported that representative species of high-altitude amphibians and reptiles have evolved a series of phenotypic characteristics in physiology,morphology,and life history to adapt to extreme environments.With the development of next-generation sequencing technology,breakthroughs have recently been made in exploring the molecular mechanisms of high-altitude adaptation at the genomic level.In particular,complete genomes of representative amphibians and reptiles in the Qinghai-Tibet Plateau have been elucidated,leading to a better understanding of poikilotherm adaptive evolution.In this study,we investigated and summarized results of phenotypic studies on high-altitude adaptation in amphibians and reptiles,focusing on the analysis and discussion of molecular mechanisms.We believe that several study fields should,therefore,focus on the(i) establishment of phenomics,(ii) association analysis of phenomics and genomics,(iii) functional analysis of genetic variation,and(iv) establishment of experimental systems.
引文
1 K?rner C.The use of‘altitude’in ecological research.Trends Ecol Evol,2007,22:569-574
    2 Dahlback A,Gelsor N,Stamnes J J,et al.UV measurements in the 3000-5000 m altitude region in Tibet.J Geophys Res,2007,112:D09308
    3 Norsang G,Kocbach L,Stamnes J,et al.Spatial distribution and temporal variation of solar UV radiation over the Tibetan Plateau.Appl Phys Res,2011,3:37-46
    4 Li W H,Liu Z,Yuan Y D.Molecular Medicine of Plateau(in Chinese).Shanghai:Fudan University Press,2011.5-18[李文华,刘忠,袁东亚.高原分子医学.上海:复旦大学出版社,2011.5-18]
    5 Blaustein A R,Belden L K.Amphibian defenses against ultraviolet-B radiation.Evol Dev,2002,5:89-97
    6 Ji L D,Qiu Y Q,Xu J,et al.Genetic adaptation of the hypoxia-inducible factor pathway to oxygen pressure among Eurasian human populations.Mol Biol Evol,2012,29:3359-3370
    7 Sun Y B,Fu T T,Jin J Q,et al.Species groups distributed across elevational gradients reveal convergent and continuous genetic adaptation to high elevations.Proc Natl Acad Sci USA,2018,115:E10634-E10641
    8 Roll U,Feldman A,Novosolov M,et al.The global distribution of tetrapods reveals a need for targeted reptile conservation.Nat Ecol Evol,2017,1:1677-1682
    9 Navas C A.Patterns of distribution of anurans in high Andean tropical elevations:Insights from integrating biogeography and evolutionary physiology.Integr Comp Biol,2006,46:82-91
    10 Navas C A.Herpetological diversity along Andean elevational gradients:Links with physiological ecology and evolutionary physiology.Comp Biochem Physiol Part A-Mol Integr Physiol,2002,133:469-485
    11 Zhao E M,Zhao K T,Zhou K Y,et al.Fauna Sinica-Reptilia Vol.2:Squamata,Lacertilia(in Chinese).Beijing:Science Press,1999.1-379[赵尔宓,赵肯堂,周开亚,等.中国动物志-爬行纲(第二卷):有鳞目蜥蜴亚目.北京:科学出版社,1999.1-379]
    12 Hodges W L.Evolution of viviparity in horned lizards(Phrynosoma):Testing the cold-climate hypothesis.J Evol Biol,2004,17:1230-1237
    13 Packard G C,Stiverson R K.Blood hemoglobin concentration in chorus frogs(Pseudacris triseriata):Relationship to body size and altitude.Am Midland Natist,1976,96:482-487
    14 González-Morales J C,Beamonte-Barrientos R,Bastiaans E,et al.A mountain or a plateau?Hematological traits vary nonlinearly with altitude in a highland lizard.Physiol Biochem Zool,2017,90:638-645
    15 Bouazza A,Slimani T,El Mouden H,et al.Thermal constraints and the influence of reproduction on thermoregulation in a high-altitude gecko(Quedenfeldtia trachyblepharus).J Zool,2016,300:36-44
    16 Reguera S,Zamora-Camacho F J,Moreno-Rueda G.The lizard Psammodromus algirus(Squamata:Lacertidae)is darker at high altitudes.Biol JLinn Soc Lond,2014,112:132-141
    17 IUCN.The IUCN red list of threatened species.Version 2018-1.2018.Available at
    18 Zhu L,Liao P,Tong H,et al.The complete mitochondrial genome of the subspecies,Phrynocephalus erythrurus parva(Reptilia,Squamata,Agamidae),a toad-headed lizard dwell at highest elevations of any reptile in the world.Mitochondrial DNA,2016,27:703-704
    19 Uetz P,Freed P,Ho?ek J,et al.The reptile database.2018.Available at
    20 Che J,Zhou W W,Hu J S,et al.Spiny frogs(Paini)illuminate the history of the Himalayan region and Southeast Asia.Proc Natl Acad Sci USA,2010,107:13765-13770
    21 Hutchison V H,Haines H B,Engbretson G.Aquatic life at high altitude:Respiratory adaptations in the lake titicaca frog,Telmatobius culeus.Respir Physiol,1976,27:115-129
    22 He J,Xiu M,Tang X,et al.The different mechanisms of hypoxic acclimatization and adaptation in lizard Phrynocephalus vlangalii living on Qinghai-Tibet Plateau.J Exp Zool,2013,319:117-123
    23 González-Morales J C,Quintana E,Díaz-Albiter H,et al.Is erythrocyte size a strategy to avoid hypoxia in Wiegmann’s Torquate Lizards(Sceloporus torquatus)?Field evidence.Can J Zool,2015,93:377-382
    24 Lu S,Xin Y,Tang X,et al.Differences in hematological traits between high-and low-altitude lizards(genus Phrynocephalus).PLo S ONE,2015,10:e0125751
    25 Ostojic H,Monge C,Cifuentes V.Hemoglobin affinity for oxygen in three subspecies of toads(Bufo sp.)living at different altitudes.Biol Res,2000,33:5-10
    26 LeachéA D,Helmer D S,Moritz C.Phenotypic evolution in high-elevation populations of western fence lizards(Sceloporus occidentalis)in the Sierra Nevada mountains.Biol J Linnean Soc,2010,100:630-641
    27 Carothers J H,Marquet P A,Jaksic F M.Thermal ecology of a Liolaemus lizard assemblage along and Andean altitudinal gradient in Chile.Rev Chil Hist Nat,1998,71:39-50
    28 Schulte II J,Macey J R,Espinoza R E,et al.Phylogenetic relationships in the iguanid lizard genus Liolaemus:Multiple origins of viviparous reproduction and evidence for recurring Andean vicariance and dispersal.Biol J Linnean Soc,2008,69:75-102
    29 Huerta-Sánchez E,Degiorgio M,Pagani L,et al.Genetic signatures reveal high-altitude adaptation in a set of Ethiopian populations.Mol Biol Evol,2013,30:1877-1888
    30 Ge R L,Cai Q,Shen Y Y,et al.Draft genome sequence of the Tibetan antelope.Nat Commun,2013,4:1858
    31 Bigham A W,Wilson M J,Julian C G,et al.Andean and Tibetan patterns of adaptation to high altitude.Am J Hum Biol,2013,25:190-197
    32 Qiu Q,Zhang G,Ma T,et al.The yak genome and adaptation to life at high altitude.Nat Genet,2012,44:946-949
    33 Yi X,Liang Y,Huerta-Sanchez E,et al.Sequencing of 50 human exomes reveals adaptation to high altitude.Science,2010,329:75-78
    34 Simonson T S,Yang Y,Huff C D,et al.Genetic evidence for high-altitude adaptation in Tibet.Science,2010,329:72-75
    35 Bigham A W,Mao X,Mei R,et al.Identifying positive selection candidate loci for high-altitude adaptation in Andean populations.Hum Genomics,2009,4:79
    36 Yang W,Qi Y,Bi K,et al.Toward understanding the genetic basis of adaptation to high-elevation life in poikilothermic species:A comparative transcriptomic analysis of two ranid frogs,Rana chensinensis and R.kukunoris.BMC Genomics,2012,13:588
    37 Yang W,Qi Y,Fu J.Exploring the genetic basis of adaptation to high elevations in reptiles:A comparative transcriptome analysis of two toadheaded agamas(genus Phrynocephalus).PLo S ONE,2014,9:e112218
    38 Yang Y,Wang L,Han J,et al.Comparative transcriptomic analysis revealed adaptation mechanism of Phrynocephalus erythrurus,the highest altitude lizard living in the Qinghai-Tibet Plateau.BMC Evol Biol,2015,15:101
    39 Wang G D,Zhang B L,Zhou W W,et al.Selection and environmental adaptation along a path to speciation in the Tibetan frog Nanorana parkeri.Proc Natl Acad Sci USA,2018,115:E5056-E5065
    40 Li J T,Gao Y D,Xie L,et al.Comparative genomic investigation of high-elevation adaptation in ectothermic snakes.Proc Natl Acad Sci USA,2018,115:8406-8411
    41 Sun Y B,Xiong Z J,Xiang X Y,et al.Whole-genome sequence of the Tibetan frog Nanorana parkeri and the comparative evolution of tetrapod genomes.Proc Natl Acad Sci USA,2015,112:E1257-E1262
    42 Frisancho A R.Developmental functional adaptation to high altitude:Review.Am J Hum Biol,2013,25:151-168
    43 Storz J F,Scott G R,Cheviron Z A.Phenotypic plasticity and genetic adaptation to high-altitude hypoxia in vertebrates.J Exp Biol,2010,213:4125-4136
    44 Xin Y.The physiological and biochemical mechanisms of adaptation to hypoxia in Phrynocephalus erythrurus(in Chinese).Dissertation for Doctoral Degree.Lanzhou:Lanzhou University,2015[辛英.红尾沙蜥适应低氧环境的生理和生化机制研究.博士学位论文.兰州:兰州大学,2015]
    45 Lu S S.The adaptive mechanism of globin family to high altitude hypoxia in Phrynocephalus lizards(in Chinese).Dissertation for Doctoral Degree.Lanzhou:Lanzhou University,2017[鲁松松.沙蜥属蜥蜴珠蛋白家族高原低氧适应机制的研究.博士学位论文.兰州:兰州大学,2017]
    46 Ruiz G,Rosenmann M,Veloso A.Hematologic values and altitudinal distribution of Chilean amphibians.Arch Biol Med Exp(Santiago),1987,20:79-84
    47 Ruiz G,Rosenmann M,Veloso A.Respiratory and hematological adaptations to high altitude in Telmatobius frogs from the Chilean Andes.Comp Biochem Physiol Part A-Physiol,1983,76:109-113
    48 Newlin M E,Ballinger R E.Blood hemoglobin concentration in four species of lizards.Copeia,1976,1976:392-394
    49 Weathers W W,White F N.Hematological observations on populations of the lizard Sceloporus occidentalis from sea level and altitude.Herpetologica,1972,28:172-175
    50 Stuart L C.The distributional implications of temperature tolerances and hemoglobin values in the toads Bufo marinus(Linnaeus)and Bufo bocourti Brocchi.Copeia,1951,1951:220-229
    51 Ruiz G,Rosenmann M,Veloso A.Altitudinal distribution and blood values in the toad,Bufo spinulosus Wiegmann.Comp Biochem Physiol Part A-Physiol,1989,94:643-646
    52 Weber R E,Ostojic H,Fago A,et al.Novel mechanism for high-altitude adaptation in hemoglobin of the Andean frog Telmatobius peruvianus.Am J Physiol-Regulatory Integrative Comp Physiol,2002,283:R1052-R1060
    53 Vinegar A,Hillyard S D.The effects of altitude on oxygen-binding parameters of the blood of the iguanid lizards,Sceloporus jarrovi and Sceloporus occidentalis.Comp Biochem Physiol Comp Physiol,1972,43:317-320
    54 Ruiz G,Rosenmann M,Nu?ez H.Blood values in South American lizards from high and low altitudes.Comp Biochem Physiol Part A-Physiol,1993,106:713-718
    55 Xin Y,Tang X,Wang H,et al.Functional characterization and expression analysis of myoglobin in high-altitude lizard Phrynocephalus erythrurus.Comp Biochem Physiol Part B-Biochem Mol Biol,2015,188:31-36
    56 Qi X Z,Yuan Q,Cao X L,et al.Adaptation of the blood of blue sheep(Pseudois nayaur)to hypoxic conditions(in Chinese).J Anhui Agric Sci,2013,41:3392-3406[齐新章,袁琦,曹兴玲,等.岩羊血液对低氧环境的适应特性研究.安徽农业科学,2013,41:3392-3406]
    57 Rong C,Yan M,Zhen-Zhong B,et al.Cardiac adaptive mechanisms of Tibetan antelope(Pantholops hodgsonii)at high altitudes.Am J Vet Res,2012,73:809-813
    58 Mc Cracken K G,Barger C P,Sorenson M D.Phylogenetic and structural analysis of the Hb A(αA/βA)and Hb D(αD/βA)hemoglobin genes in two high-altitude waterfowl from the Himalayas and the Andes:Bar-headed goose(Anser indicus)and Andean goose(Chloephaga melanoptera).Mol Phylogenets Evol,2010,56:649-658
    59 Hammond K A,Roth J,Janes D N,et al.Morphological and physiological responses to altitude in deer mice Peromyscus maniculatus.Physiol Biochem Zool,1999,72:613-622
    60 Hepple R T,Agey P J,Hazelwood L,et al.Increased capillarity in leg muscle of finches living at altitude.J Appl Physiol,1998,85:1871-1876
    61 Jiang J C,Gama R,He M L.A comparison on several hematologic values of yaks on Tibet Plateau at different altitudes.Acta Veterin Zootech Sin,1991,22:20-26[江家椿,嘎玛仁增,何玛丽.不同海拔高度西藏高原牦牛若干血液生理常值的比较.畜牧兽医学报,1991,22:20-26]
    62 Black C P,Tenney S M,van Kroonenburg M.Oxygen transport during progressive hypoxia in bar-headed geese(Anser indicus)acclimatized to sea level and 5600 meters.In:Johannes P,ed.Proceedings of the Respiratory Function in Birds,Adult and Embryonic.Berlin:Springer,1978.79-83
    63 Zhang H,He Y,Cui C,et al.Cross-altitude analysis suggests a turning point at the elevation of 4500 m for polycythemia prevalence in Tibetans.Am J Hematol,2017,92:E552-E554
    64 Erzurum S C,Ghosh S,Janocha A J,et al.Higher blood flow and circulating no products offset high-altitude hypoxia among Tibetans.Proc Natl Acad Sci USA,2007,104:17593-17598
    65 Gvo?dík L.To heat or to save time?Thermoregulation in the lizard Zootoca vivipara(Squamata:Lacertidae)in different thermal environments along an altitudinal gradient.Can J Zool,2002,80:479-492
    66 Carrascal L M,López P,Martín J,et al.Basking and antipredator behaviour in a high altitude lizard:Implications of heat-exchange rate.Ethology,2010,92:143-154
    67 Yang H,Wang X,Liu X,et al.Antioxidant peptidomics reveals novel skin antioxidant system.Mol Cell Proteomics,2009,8:571-583
    68 Yang X,Wang Y,Zhang Y,et al.Rich diversity and potency of skin antioxidant peptides revealed a novel molecular basis for high-altitude adaptation of amphibians.Sci Rep,2016,6:19866
    69 Cope R B,Fabacher D L,Lieske C,et al.Resistance of a lizard(the green anole,Anolis carolinensis;polychridae)to ultraviolet radiationinduced immunosuppression.Photochem Photobiol,2007,74:46-54
    70 Hofer R,Mokri C.Photoprotection in tadpoles of the common frog,Rana temporaria.J Photochem Photobiol B-Biol,2000,59:48-53
    71 Porter W P,Norris K S.Lizard reflectivity change and its effect on light transmission through body wall.Science,1969,163:482-484
    72 Jablonski N G,Chaplin G.Human skin pigmentation as an adaptation to UV radiation.Proc Natl Acad Sci USA,2010,107:8962-8968
    73 Brenner M,Hearing V J.The protective role of melanin against UV damage in human skin.Photo Chem Photo Biol,2007,84:539-549
    74 Wang H,Wu H,Liu W D,et al.Skin reflectance in the Han and Tibetan nationality in China(in Chinese).Chin J Dermatol,2000,33:257-258[王红,吴红,刘维达,等.汉族和藏族人群肤色的测定.中华皮肤科杂志,2000,33:257-258]
    75 Geen M R S,Johnston G R.Coloration affects heating and cooling in three color morphs of the Australian bluetongue lizard,Tiliqua scincoides.J Thermal Biol,2014,43:54-60
    76 Jong P,Gussekloo S,Brakefield P.Differences in thermal balance,body temperature and activity between non-melanic and melanic two-spot ladybird beetles(Adalia bipunctata)under controlled conditions.J Exp Biol,1996,199:2655
    77 Clusella-Trullas S,van Wyk J H,Spotila J R.Thermal melanism in ectotherms.J Thermal Biol,2007,32:235-245
    78 Jin Y,Tong H,Zhang K.The impact of phenotypic characteristics on thermoregulation in a cold-climate agamid lizard,Phrynocephalus guinanensis.Asian Herpetol Res,2016,7:210-219
    79 Jin Y,Liao P.An elevational trend of body size variation in a cold-climate agamid lizard,Phrynocephalus theobaldi.Curr Zool,2015,61:444-453
    80 Heath A G.Behavioral thermoregulation in high altitude tiger salamanders,Ambystoma tigrinum.Herpetologica,1975,31:84-93
    81 Feder M E.Thermal ecology of neotropical lungless salamanders(Amphibia:Plethodontidae):Environmental temperatures and behavioral responses.Ecology,1982,63:1665-1674
    82 Buckley L B,Miller E F,Kingsolver J G.Ectotherm thermal stress and specialization across altitude and latitude.Integr Comp Biol,2013,53:571-581
    83 Gutiérrez J A,Krenz J D,Ibargüengoytía N R.Effect of altitude on thermal responses of Liolaemus pictus argentinus in Argentina.J Thermal Biol,2010,35:332-337
    84 Navas C A.Implications of microhabitat selection and patterns of activity on the thermal ecology of high elevation neotropical anurans.Oecologia,1996,108:617-626
    85 Waltner R C.Altitudinal ecology of Agama tuberculata Gray in the western Himalayas.Univ Kans Mus Nat Hist Misc Publ,1991,83:1-74
    86 van Damme R,Bauwens D,Castilla A M,et al.Altitudinal variation of the thermal biology and running performance in the lizard Podarcis tiliguerta.Oecologia,1989,80:516-524
    87 Marquet P A,Ortíz J C,BozinoviéF,et al.Ecological aspects of thermoregulation at high altitudes:The case of Andean Liolaemus lizards in northern Chile.Oecologia,1989,81:16-20
    88 Li X T,Wang Y,Li M,et al.Comparison of cold hardiness of two toad-headed lizards from different altitudes(in Chinese).Sichuan J Zool,2017,36:300-305[李相涛,王燕,李梅,等.不同海拔两种沙蜥低温耐受性的比较.四川动物,2017,36:300-305]
    89 von May R,Catenazzi A,Corl A,et al.Divergence of thermal physiological traits in terrestrial breeding frogs along a tropical elevational gradient.Ecol Evol,2017,7:3257-3267
    90 Sunday J M,Bates A E,Kearney M R,et al.Thermal-safety margins and the necessity of thermoregulatory behavior across latitude and elevation.Proc Natl Acad Sci USA,2014,111:5610-5615
    91 Bernal M H,Lynch J D.Thermal tolerance in anuran embryos with different reproductive modes:Relationship to altitude.Sci World J,2013,2013:183212
    92 Bueter C,Haas A.Living the high life:Sceloporus malachiticus from high elevations perform better at extreme temperatures.Lake Forest College,2008,4:112-114
    93 Navas C A.Thermal extremes at high elevations in the Andes:Physiological ecology of frogs.J Thermal Biol,1997,22:467-477
    94 Li X,Wang Y,Lu S,et al.The cold hardiness of Phrynocephalus erythrurus,the lizard living at highest altitude in the world.Cryo Letters,2017,38:216-227
    95 Niu Y,Wang J,Men S,et al.Urea and plasma ice-nucleating proteins promoted the modest freeze tolerance in Pleske’s high altitude frog Nanorana pleskei.J Comp Physiol B,2018,188:599-610
    96 Stewart J R,Blackburn D G.Viviparity and placentation in lizards.In:Rheubert J L,Siegel D S,Trauth S E,eds.Reproductive Biology and Phylogeny of Lizards and Tuatara.Boca Raton:CRC Press,2014.448-563
    97 Shine R.The evolution of viviparity in reptiles:An ecological analysis.Biol Reptil,1985,15:605-694
    98 Tinkle D W,Gibbons J W.The distribution and evolution of viviparity in reptiles.In:Museum of Zoology,University of Michigan.Ann Arbor,MI,1977
    99 Weekes H C.On the distribution,habitat and reproductive habits of certain European and Australian snakes and lizards,with particular regard to their adoption of viviparity.Proc Linn Soc NSW,1933,58:e274
    100 Mell R.Beitrage zur fauna sinica.IV.Grundzüge einer?cologie der chinesicshen Reptilien und einer herpetologischen Tiergeographie Chinas.Berlin:Walter de Gruyter,1929
    101 Wang Z,Lu H L,Ma L,et al.Viviparity in high-altitude phrynocephalus lizards is adaptive because embryos cannot fully develop without maternal thermoregulation.Oecologia,2014,174:639-649
    102 Lambert S M,Wiens J J.Evolution of viviparity:A phylogenetic test of the cold-climate hypothesis in Phrynosomatid lizards.Evolution,2013,67:2614-2630
    103 Pincheira-Donoso D,Jara M,Reaney A,et al.Hypoxia and hypothermia as rival agents of selection driving the evolution of viviparity in lizards.Glob Ecol Biogeogr,2017,26:1238-1246
    104 Fei L,Hu S Q,Ye C Y,et al.Fauna Sinica-Amphibia Vol.3:Anura(in Chinese).Beijing:Science Press,2009.1-953[费梁,胡淑琴,叶昌媛,等.中国动物志-两栖纲(下卷):无尾目.北京:科学出版社,2009.1-953]
    105 Zhao E M,Yang D T.Amphibians and Reptiles in Hengduan Mountains(in Chinese).Beijing:Science Press,1997.1-303[赵尔宓,杨大同.横断山区两栖爬行动物.北京:科学出版社,1997.1-303]
    106 Piccinini M,Kleinschmidt T,Jürgens K D,et al.Primary structure and oxygen-binding properties of the hemoglobin from guanaco(Lama guanaco?,Tylopoda).Biol Chem Hoppe-Seyler,1990,371:641-648
    107 Bauer C,Rollema H S,Till H W,et al.Phosphate binding by llama and camel hemoglobin.J Comp Physiol B,1980,136:67-70
    108 Braunitzer G,Schrank B,Stangl A,et al.Regulation of respiration at high altitudes and its molecular interpretation:The sequence of beta-chains of hemoglobins from pig and llama(author’s transl).Hoppe Seylers Z Physiol Chem,1977,358:921-925
    109 Ye Y Z.The molecular mechanisms of hypoxia adaptation in lizards:A comparsion between the bald’s toad-headed agama(Phrynocephalus theobaldi)and the steppe toad-headed agama(Phrynocephalus frontalis)(in Chinese).Dissertation for Master’s Degree.Hanzhou:Hanzhou Normal University,2016[叶银子.蜥蜴低氧适应的分子机制:西藏沙蜥和草原沙蜥的比较研究.硕士学位论文.杭州:杭州师范大学,2016]
    110 Zhang Q,Han X,Ye Y,et al.Expression of HIF-1αand its target genes in the Nanorana parkeri heart:Implications for high altitude adaptation.Asian Herpetol Res,2016,7:17-20
    111 Liedtke H C,Gower D J,Wilkinson M,et al.Macroevolutionary shift in the size of amphibian genomes and the role of life history and climate.Nat Ecol Evol,2018,2:1792-1799
    112 Gao W,Sun Y B,Zhou W W,et al.Genomic and transcriptomic investigations of the evolutionary transition from oviparity to viviparity.Proc Natl Acad Sci USA,2019,116:3646-3655
    113 Yang W,Qi Y,Fu J.Genetic signals of high-altitude adaptation in amphibians:A comparative transcriptome analysis.BMC Genet,2016,17:134
    114 Johannsen W.The genotype conception of heredity.Int J Epidemiol,2014,43:989-1000
    115 Houle D,Govindaraju D R,Omholt S.Phenomics:The next challenge.Nat Rev Genet,2010,11:855-866
    116 Schork N J.Genetics of complex disease:Approaches,problems,and solutions.Am J Respir Crit Care Med,1997,156:S103-S109
    117 Furbank R T,Tester M.Phenomics-Technologies to relieve the phenotyping bottleneck.Trends Plant Sci,2011,16:635-644
    118 White J W,Andrade-Sanchez P,Gore M A,et al.Field-based phenomics for plant genetics research.Field Crops Res,2012,133:101-112
    119 Burd L,Klug M G,Martsolf J T,et al.Fetal alcohol syndrome:Neuropsychiatric phenomics.Neuro Toxicol Teratology,2003,25:697-705
    120 Zbuk K M,Eng C.Cancer phenomics:RET and PTEN as illustrative models.Nat Rev Cancer,2006,7:35-45
    121 Cobb J N,Declerck G,Greenberg A,et al.Next-generation phenotyping:Requirements and strategies for enhancing our understanding of genotype-phenotype relationships and its relevance to crop improvement.Theor Appl Genet,2013,126:867-887
    122 Cardona A,Tomancak P.Current challenges in open-source bioimage informatics.Nat Methods,2012,9:661-665
    123 Lin E,Lane H Y.Machine learning and systems genomics approaches for multi-omics data.Biomark Res,2017,5:2

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700