不同荷载模式作用下饱水沥青路面结构动力响应对比分析
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Contrastive Analysis of Dynamic Response of Saturated Asphalt Pavement Structure under Different Loading Modes
  • 作者:周志刚 ; 李岩 ; 俞文生 ; 平高明
  • 英文作者:ZHOU Zhigang;LI Yan;YU Wensheng;PING Gaoming;Key Laboratory of Road Structure and Material,Ministry of Transport of PRC,Changsha University of Science and Technology;Jiangxi Provincial Expressway Investment Group Co.Ltd.;
  • 关键词:沥青路面 ; 荷载模式 ; 动力响应 ; 流固耦合效应 ; 非线性有限元方法
  • 英文关键词:asphalt pavement;;loading modes;;dynamical response;;liquid-solid coupling effect;;nonlinear finite element method
  • 中文刊名:SYJZ
  • 英文刊名:Journal of Shenyang Jianzhu University(Natural Science)
  • 机构:长沙理工大学道路结构与材料交通行业重点实验室;江西省高速公路投资股份有限公司;
  • 出版日期:2019-03-15
  • 出版单位:沈阳建筑大学学报(自然科学版)
  • 年:2019
  • 期:v.35;No.179
  • 基金:国家自然科学基金项目(51378084);; 交通运输部应用基础研究项目(2014319825060);; 湖南省研究生科研创新项目(CX2014B371);; 道路结构与材料交通行业重点实验室(长沙)开放基金项目(kfj150303)
  • 语种:中文;
  • 页:SYJZ201902010
  • 页数:14
  • CN:02
  • ISSN:21-1578/TU
  • 分类号:77-90
摘要
目的探讨不同荷载模式下饱水沥青路面结构的水损害机理,改进和完善沥青路面防排水设计方法.方法基于沥青混合料的渗透试验和多孔介质流固耦合理论,采用非线性有限元方法,对比分析了碗形分布荷载和均布荷载作用下饱水沥青路面结构各力学场量的变化并进行数值模拟分析.结果在均布荷载和碗型荷载两载模式下,饱水沥青路面结构内部各力学场量的时程变化特性相类似,均随着车轮动荷载的作用过程表现出波动性和滞后性,孔隙水压力对体积应力和应变影响较大.与均布荷载下计算结果相比,碗形分布荷载作用时上面层内最大正孔隙水压力高0.18倍,下面层底部最大水平拉应力和最大水平拉应变分别高0.14倍和0.15倍,中面层底部最大竖向压应力和基层底部最大竖向拉应力分别高0.23倍和0.03倍,路表最大竖向位移高0.07倍,面层内最大剪应力高0.05倍.结论在碗形分布荷载作用下,饱水沥青路面更容易产生水损害.采用接近于实际车轮荷载的碗形分布荷载模式来开展饱水沥青路面动力响应分析更为合理.
        The mechanism of water damage of saturated asphalt pavement structure under different loading modes was discussed to improve and perfect the design method of waterproofing and drainage for asphalt pavement.Based on the permeability test of asphalt mixture,the changes of the mechanical field parameters among the saturated asphalt pavement structure under uniform distribution load and bowl-shaped distribution load were simulated and analyzed by using non-linear finite element method according to the theory of porous media.Stimulating results show that the change rules of the mechanical field parameters among the saturated asphalt pavement structure under bowl-shaped distribution load are similar to those under uniform distribution load,and mechanical field parameters of asphalt pavement structures show fluctuation and hysteresis with vehicle load under both loading modes,pore water pressure has a significant impact on volume stress and volume strain.Compared with the calculating results which is under uniform distribution load,the calculating results under bowl-shaped distribution load show the positive pore pressure peak in pavement surface course is 0.18 times higher,and the peaks of horizontal tensile stress and tensile strain at the bottom of the following layer are 0.14 and 0.15 times higher respectively,and the peaks of vertical tensile stress at the bottom of intermediate courses of asphalt pavement and the peaks of vertical tensile stress at the bottom of the basement are 0.23 and 0.03 times higher respectively,the peaks of vertical displacement on the surface of asphalt pavement is 0.07 times higher,the peaks of shearing stress in surface course is 0.05 times higher.So,the water damage take place more easily under bowl-shaped distribution load.It is more reasonable to analyze the liquid-solid coupling effect for saturated asphalt pavement structure by using bowl-shaped distribution load.
引文
[1] 潘宝峰.动水压力作用下路面材料损伤的评价方法研究[D].大连:大连理工大学,2010.(PAN Baofeng.Study on the evaluation method of pavement materials damage under hydrodynamic pressure[D].Dalian:Dalian University of Technology,2010.)
    [2] 傅搏峰.沥青路面水损害疲劳破坏过程的数值模拟分析[D].长沙:长沙理工大学,2005.(FU Bofeng.The numerical simulation analysis of asphalt pavement moisture damage fatigue failure process[D].Changsha:Changsha University of Science & Technology,2005.)
    [3] 董泽蛟,谭忆秋,曹丽萍,等.水-荷载耦合作用下沥青路面孔隙水压力研究[J].哈尔滨工业大学学报,2007,39(10):1614-1617.(DONG Zejiao,TAN Yiqiu,CAO Liping,et al.Research on pore pressure within asphalt pavement under the coupled moisture-loading action[J].Journal of Harbin institute of technology,2007,39(10):1614-1617.)
    [4] 崔新壮,金青.轮载作用下饱水沥青路面的动力响应[J].山东大学学报(工学版),2008,38(5):19-24.(CUI Xinzhuang,JIN Qing.The dynamic response of statured asphalt pavement under wheel loads[J].Journal of Shandong university(engineering science),2008,38(5):19-24.)
    [5] 周长红,陈静云,王哲人,等.沥青路面动水压力计算及其影响因素分析[J].中南大学学报(自然科学版),2008,39(5):1100-1104.(ZHOU Changhong,CHEN Jingyun,WANG Zheren,et al.Dynamic numerical solution of pore water pressure and its parameters for asphalt pavement[J].Journal of central south university(science and technology),2008,39(5):1100-1104.)
    [6] 祁文洋,任瑞波,李美玲.饱和沥青路面内孔隙水压力研究[J].山东理工大学学报(自然科学版),2011,25(3):63-66.(QI Wenyang,REN Ruibo,LI Meiling.Research on pore pressure within saturated asphalt pavement[J].Journal of Shandong university of technology(natural science edition),2011,25(3):63-66.)
    [7] 吴国雄,周宇,杨锐.降雨入渗时沥青路面流固耦合作用的力学响应[J].重庆交通大学学报(自然科学版),2012,31(6):1141-1144.(WU Guoxiong,ZHOU Yu,YANG Rui.Mechanical response of asphalt pavement under fluid-solid coupling in the case of rainfall infiltration[J].Journal of Chongqing jiaotong university(natural science),2012,31(6):1141-1144.)
    [8] 董泽蛟,曹丽萍,谭忆秋.饱水沥青路面动力响应的空间分布分析[J].重庆建筑大学学报,2007,29(4):79-82.(DONG Zejiao,CAO Liping,TAN Yiqiu.Spatial distribution of dynamic response for saturated asphalt pavement[J].Journal of Chongqing jianzhu university,2007,29(4):79-82.)
    [9] 邓融.水和荷载耦合作用下沥青路面动力响应研究[D].大连:大连理工大学,2010.(DENG Rong.Dynamic response of asphalt pavement subjected to the coupling action of moisture-loading[D].Dalian:Dalian University of Technology,2010.)
    [10] 李志刚,邓小勇.动载作用下沥青路面内部孔隙水压力的轴对称弹性解[J].东南大学学报(自然科学版),2008,38(5):804-810.(LI Zhigang,DENG Xiaoyong.Axial symmetric elastic solution of pore water pressure in asphalt pavement under mobile load[J].Journal of southeast university(natural science edition),2008,38(5):804-810.)
    [11] CUI Xinzhuang,JIN Qing,SHANG Qingsen,et al.Numerical simulation of dynamic pore pressure in asphalt pavement[J].Journal of southeast university(english edition),2009,5(1):63-66.
    [12] 李锟.沥青混合料抗水损害试验研究[D].大连:大连理工大学,2016.(LI Kun.Experimental study on resistance to moisture damage of asphalt mixture[D].Dalian:Dalian University of Technology,2016.)
    [13] 郭成成.孔隙水压力对沥青路面性能的影响及其监测研究[D].南京:南京航空航天大学,2013.(GUO Chengcheng.The influence of pore pressure on the performance of the asphalt pavement and its monitoring [D].Nanjing: Nanjing University of Aeronautics and Astronautics,2013.)
    [14] 刘富强,滕旭秋.高温时流固耦合作用对沥青面层畸变能的影响[J].铁道科学与工程学报,2018,15(1):87-93.(LIU Fuqiang,TENG Xuqiu.Influence of fluid-solid coupling action when high temperature on distortion energy of asphalt pavement layer [J].Journal of railway science and engineering,2018,15(1):87-93.)
    [15] 王凯.路面设计的碗形分布荷载图式[J].岩土工程学报,1983,5(4):43-55.(WANG Kai.The diagram of bowl-shaped distribution load for pavement design[J].Chinese journal of geotechnical engineering,1983,5(4):43-55.)
    [16] 周志刚,李岩,李帅帅,等.多场耦合条件下路面材料渗透性测试系统:ZL 201510212012.5 [P].2017-07-21.(ZHOU Zhigang,LI Yan,LI Shusaishuai,et al.The permeability test system for pavement material under multi-field coupling conditions:ZL 201510212012.5 [P].2017-07-21.)
    [17] 黄仰贤.路面分析与设计[M].北京:人民交通出版社,1998.(HUANG Yangxian.Pavement analysis and design[M].Beijing:China Communications Press,1998.)
    [18] 董泽蛟.多孔介质理论下饱水沥青路面动力响应分析[D].哈尔滨:哈尔滨工业大学,2006.(DONG Zejiao.Dynamic response analysis of saturated asphalt pavement based on porous medium theory[D].Harbin:Harbin Institute of Technology,2006.)
    [19] 向浩,朱洪洲,陈柳晓,等.离析对密级配沥青混合料渗透性能的影响[J].重庆交通大学学报(自然科学版),2018,37(11):26-34.(XIANG Hao,ZHU Hongzhou,CHEN Liuxiao,et al.Effects of segregation on the permeability of the dense-graded asphalt mixture[J].Journal of Chongqing jiaotong university(natural science),2018,37(11):26-34.)

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700