基于结构动力学修改技术的传递路径分析方法
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:An improved transfer path analysis method based on structural dynamic modification technique
  • 作者:徐铁 ; 王增伟 ; 廖毅 ; 陈丹华 ; 覃智威 ; 朱平
  • 英文作者:XU Tie;WANG Zengwei;LIAO Yi;CHEN Danhua;QIN Zhiwei;ZHU Ping;SAIC GM Wuling Automobile Co, Ltd;Shanghai Key Lab of Digital Manufacture for Thin-walled Structure, Shanghai Jiao Tong University;State Key Lab of Mechanical System and Vibration, Shanghai Jiao Tong University;
  • 关键词:传递路径分析 ; 结构修改 ; 车身振动 ; 频响函数 ; 响应预测
  • 英文关键词:transfer path analysis;;structural modification;;vehicle body vibration;;frequency response function;;response prediction
  • 中文刊名:ZDCJ
  • 英文刊名:Journal of Vibration and Shock
  • 机构:上汽通用五菱汽车股份有限公司;上海交通大学机械与动力工程学院上海市复杂薄板结构数字化制造重点实验室;上海交通大学机械与动力工程学院机械系统与振动国家重点实验室;
  • 出版日期:2019-03-15
  • 出版单位:振动与冲击
  • 年:2019
  • 期:v.38;No.337
  • 基金:“广西八桂学者”专项经费资助;; 柳州市科学研究与技术开发计划资助项目(2017AA10101)
  • 语种:中文;
  • 页:ZDCJ201905033
  • 页数:7
  • CN:05
  • ISSN:31-1316/TU
  • 分类号:230-236
摘要
针对传统传递路径分析(TPA)方法的局限性,提出一种基于结构动力学修改技术的传递路径分析方法。该方法通过系统频响函数预测被动部件频响函数,结合工况数据识别耦合力,实现路径贡献量分析。采用数值案例对该方法进行演示,验证其理论的正确性。针对轿车车身振动问题进行应用研究,选取发动机悬置安装点加速度和车内底板处加速度作为振动传递分析的研究对象。结果表明,该方法预测的被动部件频响函数与试验测试值吻合,可以在不拆分系统的情况下得到与传统TPA精度相仿的分析结果,验证了方法的工程可行性和应用简便性,为开展轿车车身NVH性能分析提供可借鉴的新方法和途径。
        In order to overcome limitations of the traditional transfer path analysis(TPA) method, a novel TPA method based on structural dynamic modification technique was proposed. With this method, the system's frequency response function(FRF) was used to estimate FRFs of passive parts, to identify coupling force using operational response data and to realize the path contribution analysis. A numerical example was employed for the purpose of demo of this method, and the correctness of its theory was verified. Finally, the method was used to study a vehicle body vibration problem. Its engine mounting point's acceleration and its inside floor's acceleration were taken as study objects for vibration transfer path analysis. The results showed that FRFs of passive parts predicted using this method agree well with those of test measurements; the analysis results with a similar accuracy to that of traditional TPA are obtained without splitting the system; the engineering feasibility and application simplicity of the proposed method are verified; the results provide a new way for NVH performance analysis of vehicle bodies.
引文
[1] 郭荣,万钢,左曙光. 燃料电池轿车车内噪声传递路径分析研究[J]. 汽车工程,2007,29(8): 635-641. GUO Rong, WAN Gang, ZUO Shuguang. A study on the transfer path of the interior noise of a fuel cell car[J]. Automotive Engineering, 2007, 29(8): 635-641.
    [2] WANG Zengwei, ZHU Ping. A system response prediction approach based on global transmissibilities and its relation with transfer path analysis methods[J]. Applied Acoustics, 2017, 123: 29-46.
    [3] 曹跃云,张磊,杨自春,等. 船舶振动噪声源传递路径分析及试验验证[J]. 振动与冲击,2013,32(22):158-162. CAO Yueyun, ZHANG Lei, YANG Zichun,et al. A new OPA model for ship noise sources and test validation[J]. Journal of Vibration and Shock, 2013, 32(22): 158-162.
    [4] 杨洋,褚志刚,熊敏. 基于阻抗矩阵法车内共鸣声的传递路径分析[J]. 振动与冲击,2014,33(18):164-176. YANG Yang, CHU Zhigang, XIONG Min. Transfer path analysis of booming noise in a car cabin based on impedance matrix method[J]. Journal of Vibration and Shock, 2014, 33(18): 164-176.
    [5] KLERK D D, OSSIPOV A. Operational transfer path analysis: theory, guidelines and tire noise application[J]. Mechanical Systems and Signal Processing, 2010, 24: 1950-1962.
    [6] JANSSENS K, GAJDATSY P, GIELEN L, et al. OPAX: a new transfer path analysis method based on parametric load models[J]. Mechanical Systems and Signal Processing, 2011, 25: 1321-1338.
    [7] MOORHOUSE A T, ELLIOTT A S, EVANS T A. In-situ measurement of the blocked force of structure-borne sound sources[J]. Journal of Sound and Vibration, 2009, 325: 679-685.
    [8] ELLIOTT A S, MOORHOUSE A T, HUNTLEY T, et al. In-situ source path contribution analysis of structure borne road noise[J]. Journal of Sound and Vibration, 2013, 332: 6276-6295.
    [9] LENNSTR?M D, OLSSON M, WULLENS F, et al. Validation of the blocked force method for various boundary conditions for automotive source characterization[J]. Applied Acoustics, 2016, 102: 108-119.
    [10] GUASCH O, MAGRANS F X. The global transfer direct transfer method applied to a finite simply supported elastic beam[J]. Journal of Sound and Vibration, 2004, 276: 335-359.
    [11] GUASCH O, CARLOS G, JORDI J, et al. Experimental validation of the direct transmissibility approach to classical transfer path analysis on a mechanical setup[J]. Mechanical Systems and Signal Processing, 2013, 37: 353-369.
    [12] WANG Zengwei,ZHU Ping, ZHAO Jianxuan. Response prediction techniques and case studies of a path blocking system based on global transmissibility direct transmissibility method[J]. Journal of Sound and Vibration, 2017, 388: 363-388.
    [13] SEIJS M V V D, KLERK D D, RIXEN D J. General framework for transfer path analysis: history, theory and classification of techniques[J]. Mechanical System and Signal Processing, 2016, 68/69: 217-244.
    [14] ROOZEN N B, LECLèRE Q. On the use of artificial excitation in operational transfer path analysis[J]. Applied Acoustics, 2013, 74: 1167-1174.
    [15] KLERK D D, RIXEN D J. Component transfer path analysis method with compensation for test bench dynamics[J]. Mechanical System and Signal Processing, 2010, 24: 1693-1710.
    [16] 王增伟, 朱平, 覃智威, 等. 相对传递路径分析方法及其在轿车车身振动分析中的应用[J]. 汽车技术, 2017( 9): 34-39. WANG Zengwei, ZHU Ping, QIN Zhiwei, et al. Relative transfer path analysis method and its application in auto body NVH analysis[J]. Automobile Technology, 2017(9): 34-39.
    [17] 郭荣, 周圣奇, 章桐, 等. 基于逆子结构法的振源耦合虚拟传递路径分析[J]. 同济大学学报,2015,43(4): 584-591. GUO Rong, ZHOU Shengqi, ZHANG Tong, et al. A novel visual transfer path analysis method with coupled vibration source based on inverse substructuring technique[J]. Journal of Tongji University, 2015, 43(4): 584-591.
    [18] ?ZGüVEN H N. Structural modifications using frequency response functions[J]. Mechanical Systems and Signal Processing, 1990, 4(1): 53-63.
    [19] 李孝茹, 朱坚民, 张统超, 等. 基于RCSA的深孔内圆磨床主轴端点频响函数预测[J]. 中国机械工程,2015,26(19): 2652-2661. LI Xiaoru, ZHU Jianmin, ZHANG Tongchao, et al. Frequency response prediction of deep hole internal grinder spindle endpoint based on receptance coupling substructure analysis[J]. China Mechanical Engineering, 2015, 26(19): 2652-2661.
    [20] WANG Zengwei, ZHU Ping. Response prediction for modified mechanical systems based on in-situ frequency response functions: Theoretical and numerical studies[J]. Journal of Sound and Vibration, 2017, 400: 417-441.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700