ABCG1基因表达调控在心血管疾病中的作用
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Role of regulation of ABCG1 gene expression in cardiovascular diseases
  • 作者:师莹 ; 姚柳 ; 艾玎
  • 英文作者:SHI Ying;YAO Liu;AI Ding;Tianjin Institute of Cardiovascular Disease, Tianjin Chest Hospital;Key Laboratory of Immune Microenvironment and Disease (Ministry of Education),Tianjin Medical University;Tianjin Key Laboratory of Metabolic Diseases, Tianjin Medical University;Department of Physiology and Pathophysiology, Tianjin Medical University;
  • 关键词:三磷酸腺苷结合盒转运蛋白G1 ; 心血管疾病 ; 胆固醇 ; 基因表达
  • 英文关键词:ATP-binding cassette transporter G1(ABCG1);;cardiovascular disease;;cholesterol;;gene expression
  • 中文刊名:SDXZ
  • 英文刊名:Journal of Shanghai University(Natural Science Edition)
  • 机构:天津市胸科医院天津市心血管病研究所;天津医科大学免疫微环境与疾病教育部重点实验室;天津医科大学天津市代谢病重点实验室;天津医科大学生理学与病理生理学系;
  • 出版日期:2019-06-30
  • 出版单位:上海大学学报(自然科学版)
  • 年:2019
  • 期:v.25;No.147
  • 基金:国家自然科学基金青年科学基金资助项目(81700506)
  • 语种:中文;
  • 页:SDXZ201903009
  • 页数:10
  • CN:03
  • ISSN:31-1718/N
  • 分类号:63-72
摘要
胆固醇流出作为胆固醇逆向运输的第一步,是维持细胞稳态的重要机制.三磷酸腺苷结合盒转运蛋白G1 (adenosine triphophate (ATP)-binding cassette (ABC) transporter G1, ABCG1)能够促进细胞内胆固醇流出至胞外的高密度脂蛋白,参与维持细胞胆固醇动态平衡,在动脉粥样硬化、肥胖以及糖尿病等多种疾病中发挥重要作用. ABCG1的基因表达受多重因素调控,如转录因子、蛋白修饰、DNA甲基化及小分子核糖核酸的调控,进而影响多种疾病的发生发展.主要针对ABCG1及其表达调控在心血管疾病中的作用作一综述,以期为该领域的研究提供新的方向.
        Cholesterol efflux, the first step in reverse cholesterol transport, is an important mechanism for maintaining cell homeostasis. Adenosine triphophate(ATP)-binding cassette(ABC) transporter G1(ABCG1) maintains cellular cholesterol homeostasis by promoting intracellular cholesterol efflux to high density lipoprotein and it plays a crucial role in atherosclerosis, obesity and diabetes. The expression of ABCG1 is regulated by several factors, including transcript factor, protein modification, DNA methylation and microRNA, and subsequently it contributes to the development of several diseases. In this paper, the role of ABCG1 and its regulation in cardiovascular diseases have been reviewed,and it is hoped that exploration into this area will help bring about new ideas for the research in this field.
引文
[1]Choi H Y,Ruel I,Malina A,et al.Desmocollin 1 is abundantly expressed in atherosclerosis and impairs high-density lipoprotein biogenesis[J].European Heart Journal,2018,39(14):1194-1202.
    [2] Sallam T, Jones M, Thoams B J, et al. Transcriptional regulation of macrophage cholesterol efflux and atherogenesis by a long noncoding RNA[J]. Nature Medicine, 2018, 24(3):304-312.
    [3] Rayner K J, Sheedy F J, Esau C C, et al. Antagonism of miR-33 in mice promotes reverse cholesterol transport and regression of atherosclerosis[J]. Journal of Clinical Investigation, 2011,121(7):2921-2931.
    [4] Rader D J, Hovingh G K. HDL and cardiovascular disease[J]. The Lancet, 2014, 384(9943):618-625.
    [5] Tall A R, Yvan-Charvet L, Terasaka N, et al. HDL, ABC transporters, and cholesterol efflux:implications for the treatment of atherosclerosis[J]. Cell Metabolism, 2008, 7(5):365-375.
    [6] Bhatt A, Rohatgi A. HDL Cholesterol efflux capacity:cardiovascular risk factor and potential therapeutic target[J]. Current Atherosclerosis Reports, 2016, 18(1):2.
    [7] Yvan-Charvet L, Wang N, Tall A R. Role of HDL, ABCA1, and ABCG1 transporters in cholesterol efflux and immune responses[J]. Arteriosclerosis Thrombosis and Vascular Biology,2010, 30(2):139-143.
    [8] Tarling E J, Edwards P A. ATP binding cassette transporter G1(ABCG1)is an intracellular sterol transporter[J]. Proceedings of the National Academy of Sciences, 2011, 108(49):19719-19724.
    [9] Tarling E J. Expanding roles of ABCG1 and sterol transport[J]. Current Opinion in Lipidology,2013, 24(2):138-146.
    [10] Olivier M, Bottg R, Frisdal E, et al. ABCG1 is involved in vitamin E efflux[J]. Biochim Biophys Acta, 2014, 1841(12):1741–1751.
    [11] Vaughan A M, Oram J F. ABCG1 redistributes cell cholesterol to domains removable by high density lipoprotein but not by lipid-depleted apolipoproteins[J]. Journal of Biological Chemistry,2005, 280:30150-30157.
    [12] Neufeld E B, O’Brien K, Walts A D, et al. Cellular localization and trafficking of the human ABCG1 transporter[J]. Biology, 2014, 3(4):781-800.
    [13] Gu H M, Wang F, Alabi A, et al. Identification of an amino acid residue critical for plasma membrane localization of ATP-binding cassette transporter G1[J]. Arteriosclerosis Thrombosis and Vascular Biology, 2016, 36(2):253-255.
    [14] Edwards P A, Tarling E J. Intracellular localization of endogenous mouse ABCG1 is mimicked by both ABCG1-L550 and ABCG1-P550[J]. Arteriosclerosis Thrombosis and Vascular Biology,2016, 36(7):1323-1327.
    [15] Yvan-Charvet L, Welch C, Pagler T A, et al. Increased inflammatory gene expression in ABC transporter-deficient macrophages:free cholesterol accumulation, increased signaling via toll-like receptors, and neutrophil infiltration of atherosclerotic lesions[J]. Circulation, 2008,118(18):1837-1847.
    [16] Ranalletta M, Wang N, Han S, et al. Decreased atherosclerosis in low-density lipoprotein receptor knockout mice transplanted with Abcg1-/-bone marrow[J]. Arteriosclerosis Thrombosis and Vascular Biology, 2016, 26:2308-2315.
    [17] Baldan A, Pei L, Lee R, et al. Impaired development of atherosclerosis in hyperlipidemic Ldlr-/-and ApoE-/-mice transplanted with Abcg1-/-bone marrow[J]. Arteriosclerosis Thrombosis and Vascular Biology, 2006, 26(10):2301-2307.
    [18] Meurs I, Lammers B, Zhao Y, et al. The effect of ABCG1 deficiency on atherosclerotic lesion development in LDL receptor knockout mice depends on the stage of atherogenesis[J].Atherosclerosis, 2012, 221(1):41-47.
    [19] Michiels C. Endothelial cell functions[J]. Journal of Cellular Physiology, 2003, 196(3):430-443.
    [20] Momi S, Monopoli A, Alberti P F, et al. Nitric oxide enhances the anti-inflammatory and anti-atherogenic activity of atorvastatin in a mouse model of accelerated atherosclerosis[J].Cardiovascular Research, 2012, 94(3):428-438.
    [21] Westerterp M, Tsuchiya K, Tattersall I W, et al. Deficiency of ATP-binding cassette transporters A1 and G1 in endothelial cells accelerates atherosclerosis in mice[J]. Arteriosclerosis Thrombosis and Vascular Biology, 2016, 36:1328-1337.
    [22] Whetzel A M, Sturek J M, Nagelin M H, et al. ABCG1 deficiency in mice promotes endothelial activation and monocyte-endothelial interactions[J]. Arteriosclerosis Thrombosis and Vascular Biology, 2010, 30(4):809-817.
    [23] Cheng H Y, Gaddis D E, Wu R, et al. Loss of ABCG1 influences regulatory T cell differentiation and atherosclerosis[J]. Journal of Clinical Investigation, 2016, 126(9):3236-3246.
    [24] Yvan-Charvet L, Pagler T, Gautier E L, et al. ATP-binding cassette transporters and HDL suppress hematopoietic stem cell proliferation[J]. Science, 2014, 328:1689-1693.
    [25] Westerterp M, Gourion-Arsiquaud S, Murphy A J, et al. Regulation of hematopoietic stem and progenitor cell mobilization by cholesterol efflux pathways[J]. Cell Stem Cell, 2012,11(2):195-206.
    [26] Schou J, Frikke-Schmidt R, Kardassis D, et al. Genetic variation in ABCG1 and risk of myocardial infarction and ischemic heart disease[J]. Arteriosclerosis Thrombosis and Vascular Biology, 2012, 32(2):506-515.
    [27] Xu Y, Wang W, Zhang L, et al. A polymorphism in the ABCG1 promoter is functionally associated with coronary artery disease in a Chinese Han population[J]. Atherosclerosis, 2011,219(2):648-654.
    [28] Xu M Z, Zhou H L, Gu Q, et al. The expression of ATP-binding cassette transporters in hypertensive patients[J]. Hypertension Research, 2009, 32(6):455-461.
    [29] Chen H M, Rossier C, Lalioti M D, et al. Cloning of the c DNA for a human homologue of the drosophila white gene and mapping to chromosome 21 q22.3[J]. American Journal of Human Genetics, 1996, 59:66-75.
    [30] Engel T, Bode G, Lueken A, et al. Expression and functional characterization of ABCG1splice variant ABCG1(666)[J]. FEBS Letters, 2006, 580(18):4551-4559.
    [31] Gelissen I C, Cartland S, Brown A J, et al. Expression and stability of two isoforms of ABCG1 in human vascular cells[J]. Atherosclerosis, 2010, 208(1):75-82.
    [32] Burns V, Sharpe L J, Gelissen I C, et al. Species variation in ABCG1 isoform expression:implications for the use of animal models in elucidating ABCG1 function[J]. Atherosclerosis,2013, 226(2):408-411.
    [33] Wang N, Ranalletta M, Matsuura F, et al. LXR-induced redistribution of ABCG1 to plasma membrane in macrophages enhances cholesterol mass efflux to HDL[J]. Arteriosclerosis Thrombosis and Vascular Biology, 2006, 26(6):1310-1316.
    [34] Tangirala R K, Bischoff E D, Joseph S B, et al. Identification of macrophage liver X receptors as inhibitors of atherosclerosis[J]. Proceedings of the National Academy of Sciences,2002, 99(18):11896-11901.
    [35] Lehrke M, Lebherz C, Millington S C, et al. Diet-dependent cardiovascular lipid metabolism controlled by hepatic LXRalpha[J]. Cell Metabolism, 2005, 1(5):297-308.
    [36] Beyea M M, Heslop C L, Sawyez C G, et al. Selective up-regulation of LXR-regulated genes ABCA1, ABCG1, and APOE in macrophages through increased endogenous synthesis of 24(S),25-epoxycholesterol[J]. Journal of Biological Chemistry, 2007, 282(8):5207-5216.
    [37] Jakobsson T, Venteclef N, Toresson G, et al. GPS2 is required for cholesterol efflux by triggering histone demethylation, LXR recruitment, and coregulator assembly at the ABCG1locus[J]. Molecular Cell, 2009, 34(4):510-518.
    [38] Lo Sasso G, Murzilli S, Salvatore L, et al. Intestinal specific LXR activation stimulates reverse cholesterol transport and protects from atherosclerosis[J]. Cell Metabolism, 2010, 12(2):187-193.
    [39] Moore L D, Le T, Fan G P. DNA Methylation and its basic function[J]. Neuropsychopharmacology, 2012, 38(1):23-38.
    [40] Pfeiffer L, Wahl S, Pilling L C, et al. DNA methylation of lipid-related genes affects blood lipid levels[J]. Circ Cardiovasc Genet, 2015, 8(2):334-342.
    [41] Peng P, Wang L, Yang X, et al. A preliminary study of the relationship between promoter methylation of the ABCG1, GALNT2 and HMGCR genes and coronary heart disease[J]. PLoS One, 2014, 9(8):e102265.
    [42] Hedman A K, Mendelson M M, Marioni R E, et al. Epigenetic patterns in blood associated with lipid traits predict incident coronary heart disease events and are enriched for results from genome-wide association studies[J]. Circulation-Cardiovascular Genetics, 2017, 10(1):e001487.
    [43] Ding J, Reynolds L M, Zeller T, et al. Alterations of a cellular cholesterol metabolism network are a molecular feature of obesity-related type 2 diabetes and cardiovascular disease[J].Diabetes, 2015, 64(10):3464-3474.
    [44] Dayeh T, Tuomi T, Almgren P, et al. DNA methylation of loci within ABCG1 and PHOSPHO1 in blood DNA is associated with future type 2 diabetes risk[J]. Epigenetics, 2016, 11(7):482-488.
    [45] Mamtani M, Kulkarni H, Dyer T D, et al. Genome-and epigenome-wide association study of hypertriglyceridemic waist in Mexican American families[J]. Clinical Epigenetics, 2016, 8:6.
    [46] Bartel D P. MicroRNAs:genomics, biogenesis, mechanism, and function[J]. Cell, 2004, 116(2):281-297.
    [47] Zaiou M, Rihn B H, Bakillah A. Epigenetic regulation of genes involved in the reverse cholesterol transport through interaction with mi RNAs[J]. Frontiers in Bioscience, 2018, 23:2090-2105.
    [48] Karunakaran D, Thrush A B, Nguyen M A, et al. Macrophage mitochondrial energy status regulates cholesterol efflux and is enhanced by anti-miR33 in atherosclerosis[J]. Circulation Research, 2015, 117(3):266-278.
    [49] Rayner K J, Suarez Y, Davalos A, et al. MiR-33 contributes to the regulation of cholesterol homeostasis[J]. Science, 2010, 328(5985):1570-1573.
    [50] Moore K J, Rayner K J, Suarez Y, et al. MicroRNAs and cholesterol metabolism[J]. Trends in Endocrinology and Metabolism, 2010, 21(12):699-706.
    [51] Yang S, Ye Z, Chen S, et al. MicroRNA-23a-5p promotes atherosclerotic plaque progression and vulnerability by repressing ATP-binding cassette transporter A1/G1 in macrophages[J].Journal of Molecular and Cellular Cardiology, 2018, 123:139-149.
    [52] Wang D, Xia M, Yan X, et al. Gut microbiota metabolism of anthocyanin promotes reverse cholesterol transport in mice via repressing miRNA-10b[J]. Circulation Research, 2012, 111(8):967-981.
    [53] Wang D, Yan X, Xia M, et al. Coenzyme Q10 promotes macrophage cholesterol efflux by regulation of the Activator Protein-1/MicroRNA-378/ATP-Binding Cassette Transporter G1-signaling pathway[J]. Arteriosclerosis Thrombosis and Vascular Biology, 2014, 34:1860-1870.
    [54] Adlakha Y K, Khanna S, Singh R, et al. Pro-apoptotic miRNA-128-2 modulates ABCA1,ABCG1 and RXRαexpression and cholesterol homeostasis[J]. Cell Death&Disease, 2013, 4(8):e780.
    [55] Canfran-Duque A, Rotllan N, Zhang X, et al. Macrophage deficiency of miR-21 promotes apoptosis, plaque necrosis, and vascular inflammation during atherogenesis[J]. EMBO Molecular Medicine, 2017, 9(9):1244-1262.
    [56] Valadi H, Ekstrom K, Bossios A, et al. Exosome-mediated transfer of m RNAs and microRNAs is a novel mechanism of genetic exchange between cells[J]. Nature Cell Biology, 2007,9(6):654-659.
    [57] Zernecke A, Bidzhekov K, Noels H, et al. Delivery of microRNA-126 by apoptotic bodies induces CXCL12-dependent vascular protection[J]. Science Signaling, 2009, 2(100):ra81.
    [58] Vickers K C, Palmisano B T, Shoucri B M, et al. MicroRNAs are transported in plasma and delivered to recipient cells by high-density lipoproteins[J]. Nature Cell Biology, 2011, 13(4):423-433.
    [59] Aleidi S M, Howe V, Sharpe L J, et al. The E3 ubiquitin ligases, HUWE1 and NEDD4-1, are involved in the post-translational regulation of the ABCG1 and ABCG4 lipid transporters[J].Journal of Biological Chemistry, 2015, 290(40):24604-24613.
    [60] Hsieh V, Kim M J, Gelissen I C, et al. Cellular cholesterol regulates ubiquitination and degradation of the cholesterol export proteins ABCA1 and ABCG1[J]. Journal of Biological Chemistry,2014, 289(11):7524-7536.
    [61] Nagelin M H, Srinivasan S, Nadler J L, et al. Murine 12/15-lipoxygenase regulates ATPbinding cassette transporter G1 protein degradation through p38-and JNK2-dependent pathways[J]. Journal of Biological Chemistry, 2009, 284(45):31303-31314.
    [62] Gu H M, Li G, Gao X, et al. Characterization of palmitoylation of ATP binding cassette transporter G1:effect on protein trafficking and function[J]. Biochim Biophys Acta, 2013,1831(6):1067-1078.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700